Built with Axolotl

See axolotl config

axolotl version: 0.7.0

base_model: NousResearch/Meta-Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: bkciccar/llama-3.1-8b-instruct-culture-lora

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: json
    data_files: culture_shuffle.jsonl
    split: train
    type: alpaca

test_datasets:
  - path: json
    data_files:
      - culturalbench-hard-preprocessed.jsonl
    split: train
    type:
      system_prompt: Below is a question with a potential answer. Please respond with only 'true' or 'false'.
      field_system:
      field_instruction: prompt_question
      field_input: prompt_option
      field_output: answer
      format: |-
        ### Question:
        {instruction}
        
        ### Option:
        {input}
        
        ### Response (true or false):

dataset_prepared_path:
output_dir: /scratch/bkciccar/outputs/llama-3.1-8b-lora

sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out: false
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project: "CultureBank_FineTuning"
wandb_entity: "bcicc"
wandb_watch:
wandb_name: "Lora_FineTuning_Run_02"
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
eval_batch_size: 10
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 10
eval_table_size:
eval_max_new_tokens: 5
evals_per_epoch: 16
saves_per_epoch: 4
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

overrides_of_trainer_kwargs:
  compute_metrics: "custom_metrics.compute_metrics"

llama-3.1-8b-instruct-culture-lora

This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B-Instruct on the json dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5461

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 10
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss
1.9524 0.0031 1 4.8913
1.7809 0.0652 21 3.4064
1.546 0.1303 42 2.4681
1.4622 0.1955 63 2.7218
1.4921 0.2607 84 2.9218
1.3685 0.3258 105 2.9830
1.3769 0.3910 126 3.0171
1.3545 0.4562 147 2.9413
1.3076 0.5213 168 2.9677
1.348 0.5865 189 2.9398
1.3773 0.6517 210 2.7952
1.3463 0.7168 231 2.7154
1.2929 0.7820 252 2.7142
1.3266 0.8472 273 2.7186
1.283 0.9123 294 2.7368
1.3002 0.9775 315 2.6642
1.3143 1.0403 336 2.6567
1.3153 1.1055 357 2.6529
1.25 1.1707 378 2.5628
1.2879 1.2358 399 2.5440
1.2793 1.3010 420 2.5021
1.2602 1.3662 441 2.6023
1.2722 1.4313 462 2.5679
1.231 1.4965 483 2.5696
1.2678 1.5617 504 2.6337
1.2661 1.6268 525 2.5937
1.2665 1.6920 546 2.5784
1.2655 1.7572 567 2.5441
1.3415 1.8223 588 2.5772
1.2492 1.8875 609 2.5519
1.2046 1.9527 630 2.5300
1.2731 2.0155 651 2.5886
1.2637 2.0807 672 2.5399
1.2628 2.1458 693 2.5214
1.2477 2.2110 714 2.5174
1.24 2.2762 735 2.5024
1.2603 2.3413 756 2.5612
1.2505 2.4065 777 2.5594
1.2459 2.4717 798 2.5561
1.2634 2.5369 819 2.4952
1.2029 2.6020 840 2.5080
1.2593 2.6672 861 2.5153
1.158 2.7324 882 2.5123
1.2832 2.7975 903 2.5380
1.2801 2.8627 924 2.5191
1.1838 2.9279 945 2.5267
1.2102 2.9930 966 2.5323
1.2958 3.0559 987 2.5298
1.2847 3.1210 1008 2.5263
1.1752 3.1862 1029 2.5244
1.2475 3.2514 1050 2.5180
1.2407 3.3165 1071 2.5161
1.2478 3.3817 1092 2.5279
1.1969 3.4469 1113 2.5171
1.1802 3.5120 1134 2.5435
1.2196 3.5772 1155 2.5194
1.1793 3.6424 1176 2.5250
1.2863 3.7075 1197 2.5148
1.2437 3.7727 1218 2.5327
1.1947 3.8379 1239 2.5291
1.281 3.9030 1260 2.5136
1.1866 3.9682 1281 2.5461

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for bkciccar/llama-3.1-8b-instruct-culture-lora

Adapter
(67)
this model