Edit model card
from peft import PeftModel, PeftConfig
from transformers import AutoModelForTokenClassification

config = PeftConfig.from_pretrained("bite-the-byte/byt5-small-deASCIIfy-TR")
model = AutoModelForTokenClassification.from_pretrained("google/byt5-small")
model = PeftModel.from_pretrained(model, "bite-the-byte/byt5-small-deASCIIfy-TR")

def test_mask(device, sample):
    """
    Masks the padded tokens in the input.
    Args:
        data (list): List of strings.
    Returns:
        dataset (list): List of dictionaries.
    """

    tokens = dict()

    input_tokens = [i + 3 for i in sample.encode('utf-8')]
    input_tokens.append(0) # eos token
    tokens['input_ids'] = torch.tensor([input_tokens], dtype=torch.int64, device=device)
    
    # Create attention mask
    tokens['attention_mask'] = torch.ones_like(tokens['input_ids'], dtype=torch.int64, device=device)
    
    return tokens

def rewrite(model, data):
    """
    Rewrites the input text with the model.
    Args:
        model (torch.nn.Module): Model.
        data (dict): Dictionary containing 'input_ids' and 'attention_mask'.
    Returns:
        output (str): Rewritten text.
    """

    with torch.no_grad():
        pred = torch.argmax(model(**data).logits, dim=2).squeeze(0)

    output = list() # save the indices of the characters as list of integers
    
    # Conversion table for Turkish characters {100: [300, 350], ...}
    en2tr = {en: tr for tr, en in zip(list(map(list, map(str.encode, list('ÜİĞŞÇÖüığşçö')))), list(map(ord, list('UIGSCOuigsco'))))}

    for inp, lab in zip((data['input_ids'].squeeze(0) - 3).tolist(), pred.tolist()):
        if lab and inp in en2tr:
            # if the model predicts a diacritic, replace it with the corresponding Turkish character
            output.extend(en2tr[inp])
        elif inp >= 0: output.append(inp)
    return bytes(output).decode()

def try_it(text, model):
    sample = test_mask(model.device, text)
    return rewrite(model, sample)

try_it('Cekoslovakyalilastiramadiklarimizdan misiniz?', model)
Downloads last month
24
Inference Examples
Inference API (serverless) does not yet support peft models for this pipeline type.

Dataset used to train bite-the-byte/byt5-small-deASCIIfy-TR

Space using bite-the-byte/byt5-small-deASCIIfy-TR 1