roberta-mc-6

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6310
  • Accuracy: 0.95

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6594 1.0 23 0.6523 0.95
0.6979 2.0 46 0.6400 0.95
0.6407 3.0 69 0.6331 0.95
0.7082 4.0 92 0.6360 0.95
0.6493 5.0 115 0.6258 0.95
0.6827 6.0 138 0.6239 0.95
0.6511 7.0 161 0.6399 0.95
0.6459 8.0 184 0.6279 0.95
0.6623 9.0 207 0.6247 0.95
0.6583 10.0 230 0.6307 0.95
0.6613 11.0 253 0.6269 0.95
0.6223 12.0 276 0.6270 0.95
0.6375 13.0 299 0.6284 0.95
0.7009 14.0 322 0.6309 0.95
0.6705 15.0 345 0.6299 0.95
0.6503 16.0 368 0.6396 0.95
0.7073 17.0 391 0.6305 0.95
0.614 18.0 414 0.6308 0.95
0.6512 19.0 437 0.6305 0.95
0.7055 20.0 460 0.6308 0.95
0.5702 21.0 483 0.6304 0.95
0.6654 22.0 506 0.6305 0.95
0.6129 23.0 529 0.6308 0.95
0.6477 24.0 552 0.6310 0.95
0.6178 25.0 575 0.6312 0.95
0.6562 26.0 598 0.6312 0.95
0.5972 27.0 621 0.6317 0.95
0.6324 28.0 644 0.6312 0.95
0.6064 29.0 667 0.6312 0.95
0.5833 30.0 690 0.6312 0.95
0.6916 31.0 713 0.6312 0.95
0.5591 32.0 736 0.6312 0.95
0.6477 33.0 759 0.6312 0.95
0.6483 34.0 782 0.6311 0.95
0.5563 35.0 805 0.6310 0.95
0.6061 36.0 828 0.6310 0.95
0.6043 37.0 851 0.6310 0.95
0.6274 38.0 874 0.6310 0.95
0.6115 39.0 897 0.6310 0.95
0.7107 40.0 920 0.6310 0.95
0.6703 41.0 943 0.6310 0.95
0.6052 42.0 966 0.6310 0.95
0.6228 43.0 989 0.6310 0.95
0.6629 44.0 1012 0.6310 0.95
0.5804 45.0 1035 0.6310 0.95
0.6194 46.0 1058 0.6310 0.95
0.6529 47.0 1081 0.6310 0.95
0.5779 48.0 1104 0.6310 0.95
0.6652 49.0 1127 0.6310 0.95
0.6163 50.0 1150 0.6310 0.95
0.6873 51.0 1173 0.6310 0.95
0.5608 52.0 1196 0.6310 0.95
0.6646 53.0 1219 0.6310 0.95
0.6222 54.0 1242 0.6310 0.95
0.6629 55.0 1265 0.6310 0.95
0.592 56.0 1288 0.6310 0.95
0.6047 57.0 1311 0.6310 0.95
0.5668 58.0 1334 0.6310 0.95
0.6358 59.0 1357 0.6310 0.95
0.648 60.0 1380 0.6310 0.95

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
106
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.