File size: 6,337 Bytes
b3b265a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
license: openrail
datasets:
- bigcode/the-stack
language:
- code
programming_language: 
- Java
- JavaScript
- Python
pipeline_tag: text-generation
inference: false

model-index:
- name: SantaCoder
  results:
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL HumanEval (Python)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.18
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.29
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.49
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL MBPP (Python)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.35
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.58
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.77
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL HumanEval (JavaScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.16
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.27
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.47
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL MBPP (Javascript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.28
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.51
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.70
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL HumanEval (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.15
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.26
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.41
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL MBPP (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.28
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.44
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.59
      verified: false
  - task:
      type: text-generation
    dataset:
      type: loubnabnl/humaneval_infilling
      name: HumanEval FIM (Python)
    metrics:
    - name: single_line
      type: exact_match
      value: 0.44
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL HumanEval FIM (Java)
    metrics:
    - name: single_line
      type: exact_match
      value: 0.62
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL HumanEval FIM (JavaScript)
    metrics:
    - name: single_line
      type: exact_match
      value: 0.60
      verified: false
  - task:
      type: text-generation
    dataset:
      type: code_x_glue_ct_code_to_text
      name: CodeXGLUE code-to-text (Python)
    metrics:
    - name: BLEU
      type: bleu
      value: 18.13
      verified: false
---

# SantaCoder

![banner](https://huggingface.co/datasets/bigcode/admin/resolve/main/banner.png)

Play with the model on the [SantaCoder Space Demo](https://huggingface.co/spaces/bigcode/santacoder-demo).

#  Table of Contents

1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Limitations](#limitations)
4. [Training](#training)
5. [License](#license)
6. [Citation](#citation)

# Model Summary

This is the Megatron-version of [SantaCoder](https://huggingface.co/bigcode/santacoder).
We refer the reader to the [SantaCoder model page](https://huggingface.co/bigcode/santacoder) for full documentation about this model


- **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Project Website:** [bigcode-project.org](www.bigcode-project.org)
- **Paper:** [🎅SantaCoder: Don't reach for the stars!🌟](https://t.co/YV3pzUbYOr)
- **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org)
- **Languages:** Python, Java, and JavaScript

# Use

## Intended use

The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well.
You should phrase commands like they occur in source code such as comments (e.g. `# the following function computes the sqrt`) or write a function signature and docstring and let the model complete the function body.

### Attribution & Other Requirements

The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/santacoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.

# Limitations

The model has been trained on source code in Python, Java, and JavaScript. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits.

# Training

## Model

- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Pretraining steps:** 600K
- **Pretraining tokens:** 236 billion
- **Precision:** float16

## Hardware

- **GPUs:** 96 Tesla V100
- **Training time:** 6.2 days
- **Total FLOPS:** 2.1 x 10e21

## Software

- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
- **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)

# License
The model is licenses under the CodeML Open RAIL-M v0.1 license. You can find the full license [here](https://huggingface.co/spaces/bigcode/license).