Fine-tuned Llama 3.1 8B Instruct Model
This is a fine-tuned version of Meta's Llama-3.1-8B-Instruct model using LoRA (Low-Rank Adaptation) technique.
Model Details
Model Description
This model is a fine-tuned version of Llama 3.1 8B Instruct using PEFT (Parameter-Efficient Fine-Tuning) with LoRA. The fine-tuning process focused on adapting the base model to specific use cases while maintaining the general capabilities of the original model.
- Developed by: Bhavya Bipin Gada (PRESHENT)
- Model type: LoRA fine-tuned Llama 3.1
- Language(s): English
- License: MIT
- Finetuned from model: meta-llama/Llama-3.1-8B-Instruct
Training Details
Training Procedure
The model was fine-tuned using the following LoRA configuration:
- LoRA rank (r): 8
- LoRA alpha: 16
- LoRA dropout: 0.05
- Target modules: k_proj, q_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- Task type: CAUSAL_LM
Training Data
[
{
"messages": [
{
"role": "user",
"content": "What sustainable solutions do you offer for solar energy?"
},
{
"role": "assistant",
"content": "We offer rooftop solar panels, community solar options, and solar battery storage solutions optimized for your location."
}
]
},
{
"messages": [
{
"role": "user",
"content": "Can you recommend a sustainable water purification method?"
},
{
"role": "assistant",
"content": "Reverse osmosis systems powered by renewable energy are highly effective and sustainable."
}
]
}
]
Usage
You can use this model with the Transformers library:
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
# Load the base model
base_model_id = "meta-llama/Llama-3.1-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(base_model_id)
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
# Load the LoRA adapter
adapter_path = "bhavyabgada/preshent-llama"
model = PeftModel.from_pretrained(model, adapter_path)
# Generate text
input_text = "Your prompt here"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Limitations and Biases
This model inherits the limitations and biases from the base Llama 3.1 8B Instruct model.
Framework versions
- PEFT 0.13.2
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for bhavyabgada/preshent-llama
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct