|
--- |
|
datasets: |
|
- squad_v2 |
|
license: cc-by-4.0 |
|
|
|
--- |
|
|
|
# electra-base for QA |
|
|
|
## Overview |
|
**Language model:** electra-base |
|
**Language:** English |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0 |
|
**Eval data:** SQuAD 2.0 |
|
**Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) |
|
**Infrastructure**: 1x Tesla v100 |
|
|
|
## Hyperparameters |
|
|
|
``` |
|
seed=42 |
|
batch_size = 32 |
|
n_epochs = 5 |
|
base_LM_model = "google/electra-base-discriminator" |
|
max_seq_len = 384 |
|
learning_rate = 1e-4 |
|
lr_schedule = LinearWarmup |
|
warmup_proportion = 0.1 |
|
doc_stride=128 |
|
max_query_length=64 |
|
``` |
|
|
|
## Performance |
|
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). |
|
``` |
|
"exact": 77.30144024256717, |
|
"f1": 81.35438272008543, |
|
"total": 11873, |
|
"HasAns_exact": 74.34210526315789, |
|
"HasAns_f1": 82.45961302894314, |
|
"HasAns_total": 5928, |
|
"NoAns_exact": 80.25231286795626, |
|
"NoAns_f1": 80.25231286795626, |
|
"NoAns_total": 5945 |
|
``` |
|
|
|
## Usage |
|
|
|
### In Transformers |
|
```python |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
|
|
model_name = "deepset/electra-base-squad2" |
|
|
|
# a) Get predictions |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
QA_input = { |
|
'question': 'Why is model conversion important?', |
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' |
|
} |
|
res = nlp(QA_input) |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
``` |
|
|
|
### In FARM |
|
|
|
```python |
|
from farm.modeling.adaptive_model import AdaptiveModel |
|
from farm.modeling.tokenization import Tokenizer |
|
from farm.infer import Inferencer |
|
|
|
model_name = "deepset/electra-base-squad2" |
|
|
|
# a) Get predictions |
|
nlp = Inferencer.load(model_name, task_type="question_answering") |
|
QA_input = [{"questions": ["Why is model conversion important?"], |
|
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}] |
|
res = nlp.inference_from_dicts(dicts=QA_input) |
|
|
|
# b) Load model & tokenizer |
|
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") |
|
tokenizer = Tokenizer.load(model_name) |
|
``` |
|
|
|
### In haystack |
|
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/): |
|
```python |
|
reader = FARMReader(model_name_or_path="deepset/electra-base-squad2") |
|
# or |
|
reader = TransformersReader(model="deepset/electra-base-squad2",tokenizer="deepset/electra-base-squad2") |
|
``` |
|
|
|
|
|
## Authors |
|
Vaishali Pal `vaishali.pal [at] deepset.ai` |
|
Branden Chan: `branden.chan [at] deepset.ai` |
|
Timo M枚ller: `timo.moeller [at] deepset.ai` |
|
Malte Pietsch: `malte.pietsch [at] deepset.ai` |
|
Tanay Soni: `tanay.soni [at] deepset.ai` |
|
|
|
Note: |
|
Borrowed this model from Haystack model repo for adding tensorflow model. |