File size: 3,228 Bytes
e06d14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
datasets:
- squad_v2
license: cc-by-4.0

---

# electra-base for QA

## Overview
**Language model:** electra-base  
**Language:** English  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0  
**Eval data:** SQuAD 2.0  
**Code:**  See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py)  
**Infrastructure**: 1x Tesla v100

## Hyperparameters

```
seed=42
batch_size = 32
n_epochs = 5
base_LM_model = "google/electra-base-discriminator"
max_seq_len = 384
learning_rate = 1e-4
lr_schedule = LinearWarmup
warmup_proportion = 0.1
doc_stride=128
max_query_length=64
```

## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
```
"exact": 77.30144024256717,
 "f1": 81.35438272008543,
 "total": 11873,
 "HasAns_exact": 74.34210526315789,
 "HasAns_f1": 82.45961302894314,
 "HasAns_total": 5928,
 "NoAns_exact": 80.25231286795626,
 "NoAns_f1": 80.25231286795626,
 "NoAns_total": 5945
```

## Usage

### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/electra-base-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

### In FARM

```python
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer

model_name = "deepset/electra-base-squad2"

# a) Get predictions
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
             "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input)

# b) Load model & tokenizer
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)
```

### In haystack
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/electra-base-squad2")
# or
reader = TransformersReader(model="deepset/electra-base-squad2",tokenizer="deepset/electra-base-squad2")
```


## Authors
Vaishali Pal `vaishali.pal [at] deepset.ai`
Branden Chan: `branden.chan [at] deepset.ai`
Timo M枚ller: `timo.moeller [at] deepset.ai`
Malte Pietsch: `malte.pietsch [at] deepset.ai`
Tanay Soni: `tanay.soni [at] deepset.ai`

Note:
Borrowed this model from Haystack model repo for adding tensorflow model.