File size: 6,888 Bytes
25705ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
base_model: roberta-base
datasets:
- conll2003
language:
- en
library_name: span-marker
license: apache-2.0
metrics:
- precision
- recall
- f1
pipeline_tag: token-classification
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
widget:
- text: '" The worst thing that could happen for financial markets is that if Clinton
and Dole start to trade shots in the middle of the ring with one-upmanship, "
said Hugh Johnson, chief investment officer at First Albany Corp. " That''s when
Wall Street will need to worry . "'
- text: Poland revived diplomatic ties at ambassadorial level with Yugoslavia in April
but economic links are almost moribund, despite the end of a three-year U.N. trade
embargo imposed to punish Belgrade for its support of Bosnian Serbs.
- text: '" We believe that the Israeli settlement policy in the occupied areas is
an obstacle to the establishment of peace, " German Foreign Ministry spokesman
Martin Erdmann said.'
- text: U.S. Agriculture Department officials said Friday that Mexican avocados--which
are restricted from entering the continental United States--will not likely be
entering U.S. markets any time soon, even if the controversial ban were lifted
today.
- text: 3. Tristan Hoffman (Netherlands) TVM same time
model-index:
- name: SpanMarker with roberta-base on conll2003
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Unknown
type: conll2003
split: test
metrics:
- type: f1
value: 0.9022464022464022
name: F1
- type: precision
value: 0.8943980514961726
name: Precision
- type: recall
value: 0.9102337110481586
name: Recall
---
# SpanMarker with roberta-base on conll2003
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2003](https://huggingface.co/datasets/conll2003) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [roberta-base](https://huggingface.co/roberta-base) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [roberta-base](https://huggingface.co/roberta-base)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 6 words
- **Training Dataset:** [conll2003](https://huggingface.co/datasets/conll2003)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------|
| LOC | "BRUSSELS", "Britain", "Germany" |
| MISC | "British", "EU-wide", "German" |
| ORG | "EU", "European Commission", "European Union" |
| PER | "Werner Zwingmann", "Nikolaus van der Pas", "Peter Blackburn" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:--------|:----------|:-------|:-------|
| **all** | 0.8944 | 0.9102 | 0.9022 |
| LOC | 0.9220 | 0.9215 | 0.9217 |
| MISC | 0.7332 | 0.7949 | 0.7628 |
| ORG | 0.8764 | 0.8964 | 0.8863 |
| PER | 0.9605 | 0.9629 | 0.9617 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("3. Tristan Hoffman (Netherlands) TVM same time")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 14.5019 | 113 |
| Entities per sentence | 0 | 1.6736 | 20 |
### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.2775 | 500 | 0.0282 | 0.9105 | 0.8355 | 0.8714 | 0.9670 |
| 0.5549 | 1000 | 0.0166 | 0.9215 | 0.9205 | 0.9210 | 0.9824 |
| 0.8324 | 1500 | 0.0151 | 0.9247 | 0.9346 | 0.9296 | 0.9853 |
### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |