File size: 6,888 Bytes
25705ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
base_model: roberta-base
datasets:
- conll2003
language:
- en
library_name: span-marker
license: apache-2.0
metrics:
- precision
- recall
- f1
pipeline_tag: token-classification
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
widget:
- text: '" The worst thing that could happen for financial markets is that if Clinton
    and Dole start to trade shots in the middle of the ring with one-upmanship, "
    said Hugh Johnson, chief investment officer at First Albany Corp. " That''s when
    Wall Street will need to worry . "'
- text: Poland revived diplomatic ties at ambassadorial level with Yugoslavia in April
    but economic links are almost moribund, despite the end of a three-year U.N. trade
    embargo imposed to punish Belgrade for its support of Bosnian Serbs.
- text: '" We believe that the Israeli settlement policy in the occupied areas is
    an obstacle to the establishment of peace, " German Foreign Ministry spokesman
    Martin Erdmann said.'
- text: U.S. Agriculture Department officials said Friday that Mexican avocados--which
    are restricted from entering the continental United States--will not likely be
    entering U.S. markets any time soon, even if the controversial ban were lifted
    today.
- text: 3. Tristan Hoffman (Netherlands) TVM same time
model-index:
- name: SpanMarker with roberta-base on conll2003
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: Unknown
      type: conll2003
      split: test
    metrics:
    - type: f1
      value: 0.9022464022464022
      name: F1
    - type: precision
      value: 0.8943980514961726
      name: Precision
    - type: recall
      value: 0.9102337110481586
      name: Recall
---

# SpanMarker with roberta-base on conll2003

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2003](https://huggingface.co/datasets/conll2003) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [roberta-base](https://huggingface.co/roberta-base) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [roberta-base](https://huggingface.co/roberta-base)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 6 words
- **Training Dataset:** [conll2003](https://huggingface.co/datasets/conll2003)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label | Examples                                                      |
|:------|:--------------------------------------------------------------|
| LOC   | "BRUSSELS", "Britain", "Germany"                              |
| MISC  | "British", "EU-wide", "German"                                |
| ORG   | "EU", "European Commission", "European Union"                 |
| PER   | "Werner Zwingmann", "Nikolaus van der Pas", "Peter Blackburn" |

## Evaluation

### Metrics
| Label   | Precision | Recall | F1     |
|:--------|:----------|:-------|:-------|
| **all** | 0.8944    | 0.9102 | 0.9022 |
| LOC     | 0.9220    | 0.9215 | 0.9217 |
| MISC    | 0.7332    | 0.7949 | 0.7628 |
| ORG     | 0.8764    | 0.8964 | 0.8863 |
| PER     | 0.9605    | 0.9629 | 0.9617 |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("3. Tristan Hoffman (Netherlands) TVM same time")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 14.5019 | 113 |
| Entities per sentence | 0   | 1.6736  | 20  |

### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training Results
| Epoch  | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.2775 | 500  | 0.0282          | 0.9105               | 0.8355            | 0.8714        | 0.9670              |
| 0.5549 | 1000 | 0.0166          | 0.9215               | 0.9205            | 0.9210        | 0.9824              |
| 0.8324 | 1500 | 0.0151          | 0.9247               | 0.9346            | 0.9296        | 0.9853              |

### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->