bhadauriaupendra062 commited on
Commit
25705ce
1 Parent(s): f7d9721

End of training

Browse files
README.md ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: roberta-base
3
+ datasets:
4
+ - conll2003
5
+ language:
6
+ - en
7
+ library_name: span-marker
8
+ license: apache-2.0
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ pipeline_tag: token-classification
14
+ tags:
15
+ - span-marker
16
+ - token-classification
17
+ - ner
18
+ - named-entity-recognition
19
+ - generated_from_span_marker_trainer
20
+ widget:
21
+ - text: '" The worst thing that could happen for financial markets is that if Clinton
22
+ and Dole start to trade shots in the middle of the ring with one-upmanship, "
23
+ said Hugh Johnson, chief investment officer at First Albany Corp. " That''s when
24
+ Wall Street will need to worry . "'
25
+ - text: Poland revived diplomatic ties at ambassadorial level with Yugoslavia in April
26
+ but economic links are almost moribund, despite the end of a three-year U.N. trade
27
+ embargo imposed to punish Belgrade for its support of Bosnian Serbs.
28
+ - text: '" We believe that the Israeli settlement policy in the occupied areas is
29
+ an obstacle to the establishment of peace, " German Foreign Ministry spokesman
30
+ Martin Erdmann said.'
31
+ - text: U.S. Agriculture Department officials said Friday that Mexican avocados--which
32
+ are restricted from entering the continental United States--will not likely be
33
+ entering U.S. markets any time soon, even if the controversial ban were lifted
34
+ today.
35
+ - text: 3. Tristan Hoffman (Netherlands) TVM same time
36
+ model-index:
37
+ - name: SpanMarker with roberta-base on conll2003
38
+ results:
39
+ - task:
40
+ type: token-classification
41
+ name: Named Entity Recognition
42
+ dataset:
43
+ name: Unknown
44
+ type: conll2003
45
+ split: test
46
+ metrics:
47
+ - type: f1
48
+ value: 0.9022464022464022
49
+ name: F1
50
+ - type: precision
51
+ value: 0.8943980514961726
52
+ name: Precision
53
+ - type: recall
54
+ value: 0.9102337110481586
55
+ name: Recall
56
+ ---
57
+
58
+ # SpanMarker with roberta-base on conll2003
59
+
60
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2003](https://huggingface.co/datasets/conll2003) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [roberta-base](https://huggingface.co/roberta-base) as the underlying encoder.
61
+
62
+ ## Model Details
63
+
64
+ ### Model Description
65
+ - **Model Type:** SpanMarker
66
+ - **Encoder:** [roberta-base](https://huggingface.co/roberta-base)
67
+ - **Maximum Sequence Length:** 256 tokens
68
+ - **Maximum Entity Length:** 6 words
69
+ - **Training Dataset:** [conll2003](https://huggingface.co/datasets/conll2003)
70
+ - **Language:** en
71
+ - **License:** apache-2.0
72
+
73
+ ### Model Sources
74
+
75
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
76
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
77
+
78
+ ### Model Labels
79
+ | Label | Examples |
80
+ |:------|:--------------------------------------------------------------|
81
+ | LOC | "BRUSSELS", "Britain", "Germany" |
82
+ | MISC | "British", "EU-wide", "German" |
83
+ | ORG | "EU", "European Commission", "European Union" |
84
+ | PER | "Werner Zwingmann", "Nikolaus van der Pas", "Peter Blackburn" |
85
+
86
+ ## Evaluation
87
+
88
+ ### Metrics
89
+ | Label | Precision | Recall | F1 |
90
+ |:--------|:----------|:-------|:-------|
91
+ | **all** | 0.8944 | 0.9102 | 0.9022 |
92
+ | LOC | 0.9220 | 0.9215 | 0.9217 |
93
+ | MISC | 0.7332 | 0.7949 | 0.7628 |
94
+ | ORG | 0.8764 | 0.8964 | 0.8863 |
95
+ | PER | 0.9605 | 0.9629 | 0.9617 |
96
+
97
+ ## Uses
98
+
99
+ ### Direct Use for Inference
100
+
101
+ ```python
102
+ from span_marker import SpanMarkerModel
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
106
+ # Run inference
107
+ entities = model.predict("3. Tristan Hoffman (Netherlands) TVM same time")
108
+ ```
109
+
110
+ ### Downstream Use
111
+ You can finetune this model on your own dataset.
112
+
113
+ <details><summary>Click to expand</summary>
114
+
115
+ ```python
116
+ from span_marker import SpanMarkerModel, Trainer
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
120
+
121
+ # Specify a Dataset with "tokens" and "ner_tag" columns
122
+ dataset = load_dataset("conll2003") # For example CoNLL2003
123
+
124
+ # Initialize a Trainer using the pretrained model & dataset
125
+ trainer = Trainer(
126
+ model=model,
127
+ train_dataset=dataset["train"],
128
+ eval_dataset=dataset["validation"],
129
+ )
130
+ trainer.train()
131
+ trainer.save_model("span_marker_model_id-finetuned")
132
+ ```
133
+ </details>
134
+
135
+ <!--
136
+ ### Out-of-Scope Use
137
+
138
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
139
+ -->
140
+
141
+ <!--
142
+ ## Bias, Risks and Limitations
143
+
144
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
145
+ -->
146
+
147
+ <!--
148
+ ### Recommendations
149
+
150
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
151
+ -->
152
+
153
+ ## Training Details
154
+
155
+ ### Training Set Metrics
156
+ | Training set | Min | Median | Max |
157
+ |:----------------------|:----|:--------|:----|
158
+ | Sentence length | 1 | 14.5019 | 113 |
159
+ | Entities per sentence | 0 | 1.6736 | 20 |
160
+
161
+ ### Training Hyperparameters
162
+ - learning_rate: 1e-05
163
+ - train_batch_size: 4
164
+ - eval_batch_size: 4
165
+ - seed: 42
166
+ - gradient_accumulation_steps: 2
167
+ - total_train_batch_size: 8
168
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
169
+ - lr_scheduler_type: linear
170
+ - lr_scheduler_warmup_ratio: 0.1
171
+ - num_epochs: 1
172
+ - mixed_precision_training: Native AMP
173
+
174
+ ### Training Results
175
+ | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
176
+ |:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
177
+ | 0.2775 | 500 | 0.0282 | 0.9105 | 0.8355 | 0.8714 | 0.9670 |
178
+ | 0.5549 | 1000 | 0.0166 | 0.9215 | 0.9205 | 0.9210 | 0.9824 |
179
+ | 0.8324 | 1500 | 0.0151 | 0.9247 | 0.9346 | 0.9296 | 0.9853 |
180
+
181
+ ### Framework Versions
182
+ - Python: 3.10.12
183
+ - SpanMarker: 1.5.0
184
+ - Transformers: 4.41.2
185
+ - PyTorch: 2.3.0+cu121
186
+ - Datasets: 2.20.0
187
+ - Tokenizers: 0.19.1
188
+
189
+ ## Citation
190
+
191
+ ### BibTeX
192
+ ```
193
+ @software{Aarsen_SpanMarker,
194
+ author = {Aarsen, Tom},
195
+ license = {Apache-2.0},
196
+ title = {{SpanMarker for Named Entity Recognition}},
197
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
198
+ }
199
+ ```
200
+
201
+ <!--
202
+ ## Glossary
203
+
204
+ *Clearly define terms in order to be accessible across audiences.*
205
+ -->
206
+
207
+ <!--
208
+ ## Model Card Authors
209
+
210
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
211
+ -->
212
+
213
+ <!--
214
+ ## Model Card Contact
215
+
216
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
217
+ -->
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<end>": 50266,
3
+ "<start>": 50265
4
+ }
config.json ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SpanMarkerModel"
4
+ ],
5
+ "encoder": {
6
+ "_name_or_path": "roberta-base",
7
+ "add_cross_attention": false,
8
+ "architectures": [
9
+ "RobertaForMaskedLM"
10
+ ],
11
+ "attention_probs_dropout_prob": 0.1,
12
+ "bad_words_ids": null,
13
+ "begin_suppress_tokens": null,
14
+ "bos_token_id": 0,
15
+ "chunk_size_feed_forward": 0,
16
+ "classifier_dropout": null,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "encoder_no_repeat_ngram_size": 0,
23
+ "eos_token_id": 2,
24
+ "exponential_decay_length_penalty": null,
25
+ "finetuning_task": null,
26
+ "forced_bos_token_id": null,
27
+ "forced_eos_token_id": null,
28
+ "hidden_act": "gelu",
29
+ "hidden_dropout_prob": 0.1,
30
+ "hidden_size": 768,
31
+ "id2label": {
32
+ "0": "O",
33
+ "1": "B-PER",
34
+ "2": "I-PER",
35
+ "3": "B-ORG",
36
+ "4": "I-ORG",
37
+ "5": "B-LOC",
38
+ "6": "I-LOC",
39
+ "7": "B-MISC",
40
+ "8": "I-MISC"
41
+ },
42
+ "initializer_range": 0.02,
43
+ "intermediate_size": 3072,
44
+ "is_decoder": false,
45
+ "is_encoder_decoder": false,
46
+ "label2id": {
47
+ "B-LOC": 5,
48
+ "B-MISC": 7,
49
+ "B-ORG": 3,
50
+ "B-PER": 1,
51
+ "I-LOC": 6,
52
+ "I-MISC": 8,
53
+ "I-ORG": 4,
54
+ "I-PER": 2,
55
+ "O": 0
56
+ },
57
+ "layer_norm_eps": 1e-05,
58
+ "length_penalty": 1.0,
59
+ "max_length": 20,
60
+ "max_position_embeddings": 514,
61
+ "min_length": 0,
62
+ "model_type": "roberta",
63
+ "no_repeat_ngram_size": 0,
64
+ "num_attention_heads": 12,
65
+ "num_beam_groups": 1,
66
+ "num_beams": 1,
67
+ "num_hidden_layers": 12,
68
+ "num_return_sequences": 1,
69
+ "output_attentions": false,
70
+ "output_hidden_states": false,
71
+ "output_scores": false,
72
+ "pad_token_id": 1,
73
+ "position_embedding_type": "absolute",
74
+ "prefix": null,
75
+ "problem_type": null,
76
+ "pruned_heads": {},
77
+ "remove_invalid_values": false,
78
+ "repetition_penalty": 1.0,
79
+ "return_dict": true,
80
+ "return_dict_in_generate": false,
81
+ "sep_token_id": null,
82
+ "suppress_tokens": null,
83
+ "task_specific_params": null,
84
+ "temperature": 1.0,
85
+ "tf_legacy_loss": false,
86
+ "tie_encoder_decoder": false,
87
+ "tie_word_embeddings": true,
88
+ "tokenizer_class": null,
89
+ "top_k": 50,
90
+ "top_p": 1.0,
91
+ "torch_dtype": null,
92
+ "torchscript": false,
93
+ "transformers_version": "4.41.2",
94
+ "type_vocab_size": 1,
95
+ "typical_p": 1.0,
96
+ "use_bfloat16": false,
97
+ "use_cache": true,
98
+ "vocab_size": 50272
99
+ },
100
+ "entity_max_length": 6,
101
+ "id2label": {
102
+ "0": "O",
103
+ "1": "LOC",
104
+ "2": "MISC",
105
+ "3": "ORG",
106
+ "4": "PER"
107
+ },
108
+ "id2reduced_id": {
109
+ "0": 0,
110
+ "1": 4,
111
+ "2": 4,
112
+ "3": 3,
113
+ "4": 3,
114
+ "5": 1,
115
+ "6": 1,
116
+ "7": 2,
117
+ "8": 2
118
+ },
119
+ "label2id": {
120
+ "LOC": 1,
121
+ "MISC": 2,
122
+ "O": 0,
123
+ "ORG": 3,
124
+ "PER": 4
125
+ },
126
+ "marker_max_length": 128,
127
+ "max_next_context": null,
128
+ "max_prev_context": null,
129
+ "model_max_length": 256,
130
+ "model_max_length_default": 512,
131
+ "model_type": "span-marker",
132
+ "span_marker_version": "1.5.0",
133
+ "torch_dtype": "float32",
134
+ "trained_with_document_context": false,
135
+ "transformers_version": "4.41.2",
136
+ "vocab_size": 50272
137
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89fdada488beec7f79aee5c699b36b574a99c4b60a49b1efaf67e89fbcdd241b
3
+ size 498658900
runs/Jul09_05-46-03_941f9e81195f/events.out.tfevents.1720503992.941f9e81195f.1654.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46ce5ed76f4f72799f41a3b984ed24820e9abddb9e319efbd0ce989554c26777
3
+ size 16813
runs/Jul09_05-46-03_941f9e81195f/events.out.tfevents.1720504841.941f9e81195f.1654.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d0945de2ff54b677f9e452d060745290354e89903796df84c36957c7e0d806d
3
+ size 1096
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "50265": {
45
+ "content": "<start>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "50266": {
53
+ "content": "<end>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ }
60
+ },
61
+ "bos_token": "<s>",
62
+ "clean_up_tokenization_spaces": true,
63
+ "cls_token": "<s>",
64
+ "entity_max_length": 6,
65
+ "eos_token": "</s>",
66
+ "errors": "replace",
67
+ "mask_token": "<mask>",
68
+ "model_max_length": 256,
69
+ "pad_token": "<pad>",
70
+ "sep_token": "</s>",
71
+ "tokenizer_class": "RobertaTokenizer",
72
+ "trim_offsets": true,
73
+ "unk_token": "<unk>"
74
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d90bfd09f11d900afb96045f16e76ec6aa240f4d3e9fbb025e28726f9ff54f37
3
+ size 5112
vocab.json ADDED
The diff for this file is too large to render. See raw diff