|
--- |
|
library_name: transformers |
|
tags: |
|
- trl |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
|
|
|
|
|
|
## Model Details |
|
|
|
_Reasoning more natural and faster maybe..._ |
|
Recommend system prompt like deepseek, added instruction into the system prompt can improving result |
|
|
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
MAX_REASONING_TOKENS = 4096 |
|
MAX_RESPONSE_TOKENS = 1024 |
|
|
|
model_name = "beyoru/ThinkAgain1.2" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
messages = [ |
|
{'role': 'system', 'content': """You are a helpful and harmless AI assistant. |
|
A conversation between User and Assistant. The user asks a question, and the Assistant solves it. |
|
The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. |
|
The reasoning process and answer are enclosed within `<think> </think>` and `<answer> </answer>`\ |
|
tags, respectively, i.e., `<think> reasoning process here </think>` `<answer> answer here </answer>`. |
|
User: **prompt**. |
|
Assistant:"""} |
|
] |
|
|
|
def stream_output(output_text): |
|
for char in output_text: |
|
print(char, end="", flush=True) |
|
|
|
while True: |
|
prompt = input("USER: ") |
|
|
|
messages.append({"role": "user", "content": prompt}) |
|
|
|
# Generate reasoning |
|
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True) |
|
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device) |
|
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS) |
|
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
messages.append({"role": "reasoning", "content": reasoning_output}) |
|
|
|
print("REASONING: ", end="") |
|
stream_output(reasoning_output) |
|
print() |
|
|
|
# Generate answer |
|
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device) |
|
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS) |
|
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
messages.append({"role": "assistant", "content": response_output}) |
|
|
|
print("ASSISTANT: ", end="") |
|
stream_output(response_output) |
|
print() |
|
``` |
|
|
|
## Improvement: |
|
- Better performance in other language |
|
- Reduce hallucination in some case |
|
|
|
## Config: |
|
_update_ |
|
|