MAE-CT-M1N0-M12_v8_split4_v3
This model is a fine-tuned version of MCG-NJU/videomae-large-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5156
- Accuracy: 0.8667
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10500
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6865 | 0.0067 | 70 | 0.6839 | 0.6667 |
0.6859 | 1.0067 | 140 | 0.6229 | 0.6933 |
0.7131 | 2.0067 | 210 | 0.6232 | 0.6933 |
0.6056 | 3.0067 | 280 | 0.5851 | 0.6933 |
0.6318 | 4.0067 | 350 | 0.6402 | 0.68 |
0.5505 | 5.0067 | 420 | 0.4957 | 0.68 |
0.4649 | 6.0067 | 490 | 0.4274 | 0.7867 |
0.4421 | 7.0067 | 560 | 0.4528 | 0.7467 |
0.6176 | 8.0067 | 630 | 0.4277 | 0.7867 |
0.3803 | 9.0067 | 700 | 0.3763 | 0.8133 |
0.5473 | 10.0067 | 770 | 0.4343 | 0.8133 |
0.5326 | 11.0067 | 840 | 0.5099 | 0.8 |
0.7147 | 12.0067 | 910 | 0.4049 | 0.7867 |
0.5606 | 13.0067 | 980 | 0.5661 | 0.8133 |
0.4271 | 14.0067 | 1050 | 0.6158 | 0.7733 |
0.3684 | 15.0067 | 1120 | 0.5156 | 0.8667 |
0.4766 | 16.0067 | 1190 | 0.5960 | 0.8133 |
0.402 | 17.0067 | 1260 | 0.9327 | 0.8 |
0.2721 | 18.0067 | 1330 | 0.5997 | 0.8667 |
0.352 | 19.0067 | 1400 | 0.9081 | 0.8 |
0.6505 | 20.0067 | 1470 | 0.9743 | 0.7867 |
0.0024 | 21.0067 | 1540 | 0.9212 | 0.8 |
0.1791 | 22.0067 | 1610 | 1.0021 | 0.7867 |
0.3377 | 23.0067 | 1680 | 1.0045 | 0.8267 |
0.0004 | 24.0067 | 1750 | 0.9731 | 0.8267 |
0.0127 | 25.0067 | 1820 | 1.1212 | 0.8267 |
0.0325 | 26.0067 | 1890 | 1.0253 | 0.84 |
0.0002 | 27.0067 | 1960 | 1.0795 | 0.7867 |
0.0001 | 28.0067 | 2030 | 1.1357 | 0.7867 |
0.212 | 29.0067 | 2100 | 1.1049 | 0.8 |
0.0001 | 30.0067 | 2170 | 0.9523 | 0.8 |
0.2036 | 31.0067 | 2240 | 0.8127 | 0.8667 |
0.3654 | 32.0067 | 2310 | 1.1963 | 0.84 |
0.0009 | 33.0067 | 2380 | 1.3746 | 0.8133 |
0.0001 | 34.0067 | 2450 | 1.3530 | 0.7867 |
0.0001 | 35.0067 | 2520 | 1.4819 | 0.8 |
0.0003 | 36.0067 | 2590 | 1.3682 | 0.7867 |
0.0001 | 37.0067 | 2660 | 1.3876 | 0.8 |
0.0001 | 38.0067 | 2730 | 1.4598 | 0.8 |
0.0074 | 39.0067 | 2800 | 1.4145 | 0.7867 |
0.4399 | 40.0067 | 2870 | 1.2042 | 0.8 |
0.0001 | 41.0067 | 2940 | 1.2232 | 0.7733 |
0.0003 | 42.0067 | 3010 | 1.3577 | 0.7733 |
0.2268 | 43.0067 | 3080 | 1.3768 | 0.8 |
0.0001 | 44.0067 | 3150 | 1.4095 | 0.76 |
0.003 | 45.0067 | 3220 | 1.2064 | 0.8133 |
0.2623 | 46.0067 | 3290 | 1.5009 | 0.7867 |
0.0001 | 47.0067 | 3360 | 1.4357 | 0.8 |
0.0002 | 48.0067 | 3430 | 1.3622 | 0.8 |
0.0005 | 49.0067 | 3500 | 1.2478 | 0.8267 |
0.2139 | 50.0067 | 3570 | 1.0072 | 0.84 |
0.1948 | 51.0067 | 3640 | 1.4672 | 0.7867 |
0.4513 | 52.0067 | 3710 | 1.5611 | 0.7867 |
0.0003 | 53.0067 | 3780 | 1.6393 | 0.7867 |
0.0497 | 54.0067 | 3850 | 1.6415 | 0.7733 |
0.0001 | 55.0067 | 3920 | 1.5294 | 0.8133 |
0.0009 | 56.0067 | 3990 | 1.6254 | 0.7867 |
0.0 | 57.0067 | 4060 | 1.5758 | 0.7867 |
0.0001 | 58.0067 | 4130 | 1.3458 | 0.8133 |
0.0 | 59.0067 | 4200 | 1.4999 | 0.7867 |
0.0 | 60.0067 | 4270 | 1.5483 | 0.7867 |
0.0 | 61.0067 | 4340 | 1.4989 | 0.8133 |
0.1728 | 62.0067 | 4410 | 1.6545 | 0.7867 |
0.0003 | 63.0067 | 4480 | 1.5882 | 0.8 |
0.0017 | 64.0067 | 4550 | 1.8578 | 0.7333 |
0.0003 | 65.0067 | 4620 | 1.7840 | 0.7733 |
0.0 | 66.0067 | 4690 | 1.9174 | 0.76 |
0.0 | 67.0067 | 4760 | 2.0017 | 0.76 |
0.0 | 68.0067 | 4830 | 2.0249 | 0.76 |
0.1594 | 69.0067 | 4900 | 1.8066 | 0.7733 |
0.0 | 70.0067 | 4970 | 1.8688 | 0.7733 |
0.1722 | 71.0067 | 5040 | 1.9031 | 0.7733 |
0.2082 | 72.0067 | 5110 | 1.2061 | 0.8133 |
0.0 | 73.0067 | 5180 | 1.5182 | 0.8133 |
0.0 | 74.0067 | 5250 | 1.2031 | 0.8267 |
0.0027 | 75.0067 | 5320 | 1.2114 | 0.8133 |
0.0001 | 76.0067 | 5390 | 1.3714 | 0.8267 |
0.0 | 77.0067 | 5460 | 1.3626 | 0.8267 |
0.0 | 78.0067 | 5530 | 1.5210 | 0.84 |
0.0 | 79.0067 | 5600 | 1.7948 | 0.8 |
0.0005 | 80.0067 | 5670 | 1.5987 | 0.7867 |
0.0 | 81.0067 | 5740 | 1.6562 | 0.8267 |
0.0 | 82.0067 | 5810 | 1.6416 | 0.8133 |
0.0 | 83.0067 | 5880 | 1.6684 | 0.8267 |
0.0467 | 84.0067 | 5950 | 1.9072 | 0.8 |
0.0002 | 85.0067 | 6020 | 1.9762 | 0.7733 |
0.0001 | 86.0067 | 6090 | 1.8163 | 0.8 |
0.0 | 87.0067 | 6160 | 1.7790 | 0.7867 |
0.0001 | 88.0067 | 6230 | 1.4023 | 0.8133 |
0.0 | 89.0067 | 6300 | 1.3033 | 0.8267 |
0.0 | 90.0067 | 6370 | 1.4240 | 0.8 |
0.0 | 91.0067 | 6440 | 1.7616 | 0.76 |
0.0 | 92.0067 | 6510 | 1.3589 | 0.8 |
0.0001 | 93.0067 | 6580 | 1.8171 | 0.7867 |
0.0 | 94.0067 | 6650 | 1.4888 | 0.8267 |
0.0 | 95.0067 | 6720 | 1.7894 | 0.8133 |
0.0 | 96.0067 | 6790 | 1.7989 | 0.8133 |
0.0 | 97.0067 | 6860 | 1.7690 | 0.8133 |
0.0 | 98.0067 | 6930 | 1.6816 | 0.8133 |
0.0 | 99.0067 | 7000 | 1.7260 | 0.8133 |
0.0 | 100.0067 | 7070 | 1.7433 | 0.8133 |
0.0 | 101.0067 | 7140 | 1.7458 | 0.8133 |
0.0 | 102.0067 | 7210 | 1.7581 | 0.8133 |
0.0 | 103.0067 | 7280 | 1.5385 | 0.84 |
0.0 | 104.0067 | 7350 | 1.5528 | 0.8267 |
0.0 | 105.0067 | 7420 | 1.5646 | 0.8267 |
0.0 | 106.0067 | 7490 | 1.5761 | 0.8267 |
0.0 | 107.0067 | 7560 | 1.5740 | 0.8267 |
0.0 | 108.0067 | 7630 | 1.5858 | 0.8267 |
0.0 | 109.0067 | 7700 | 1.5992 | 0.8267 |
0.0035 | 110.0067 | 7770 | 1.8796 | 0.8133 |
0.0 | 111.0067 | 7840 | 1.5757 | 0.8133 |
0.0 | 112.0067 | 7910 | 1.5459 | 0.8133 |
0.0 | 113.0067 | 7980 | 1.5457 | 0.8133 |
0.0 | 114.0067 | 8050 | 1.5464 | 0.8267 |
0.0 | 115.0067 | 8120 | 1.5455 | 0.8267 |
0.0 | 116.0067 | 8190 | 1.5476 | 0.8267 |
0.0 | 117.0067 | 8260 | 1.5904 | 0.8267 |
0.0 | 118.0067 | 8330 | 1.6196 | 0.84 |
0.0018 | 119.0067 | 8400 | 1.4688 | 0.84 |
0.0 | 120.0067 | 8470 | 1.6467 | 0.8267 |
0.0 | 121.0067 | 8540 | 1.8343 | 0.7867 |
0.2547 | 122.0067 | 8610 | 1.5052 | 0.8533 |
0.0 | 123.0067 | 8680 | 1.5886 | 0.84 |
0.0 | 124.0067 | 8750 | 1.4159 | 0.8533 |
0.0 | 125.0067 | 8820 | 1.4188 | 0.8533 |
0.0 | 126.0067 | 8890 | 1.4199 | 0.8533 |
0.0 | 127.0067 | 8960 | 1.4224 | 0.8533 |
0.0 | 128.0067 | 9030 | 1.4154 | 0.8533 |
0.0 | 129.0067 | 9100 | 1.4262 | 0.8533 |
0.0 | 130.0067 | 9170 | 1.4201 | 0.8667 |
0.0 | 131.0067 | 9240 | 1.4197 | 0.8667 |
0.2341 | 132.0067 | 9310 | 1.7014 | 0.8267 |
0.0 | 133.0067 | 9380 | 1.4320 | 0.8533 |
0.0 | 134.0067 | 9450 | 1.4451 | 0.84 |
0.0 | 135.0067 | 9520 | 1.4577 | 0.84 |
0.0 | 136.0067 | 9590 | 1.4622 | 0.8267 |
0.0 | 137.0067 | 9660 | 1.4703 | 0.8267 |
0.0 | 138.0067 | 9730 | 1.4797 | 0.8267 |
0.0 | 139.0067 | 9800 | 1.4841 | 0.8267 |
0.0 | 140.0067 | 9870 | 1.4888 | 0.8267 |
0.0 | 141.0067 | 9940 | 1.4930 | 0.8267 |
0.0 | 142.0067 | 10010 | 1.4959 | 0.8267 |
0.0 | 143.0067 | 10080 | 1.5002 | 0.8267 |
0.0 | 144.0067 | 10150 | 1.5562 | 0.8267 |
0.0 | 145.0067 | 10220 | 1.5572 | 0.8267 |
0.0 | 146.0067 | 10290 | 1.5577 | 0.8267 |
0.0 | 147.0067 | 10360 | 1.5579 | 0.8267 |
0.0 | 148.0067 | 10430 | 1.5576 | 0.8267 |
0.0 | 149.0067 | 10500 | 1.5577 | 0.8267 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for beingbatman/MAE-CT-M1N0-M12_v8_split4_v3
Base model
MCG-NJU/videomae-large-finetuned-kinetics