File size: 2,551 Bytes
e4011f7 5147424 e4011f7 635fde5 e4011f7 5147424 e4011f7 5147424 e4011f7 635fde5 e4011f7 5147424 e4011f7 5147424 e4011f7 95f6c95 e4011f7 95f6c95 e4011f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- gtsrb
metrics:
- accuracy
model-index:
- name: gtsrb-model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: bazyl/GTSRB
type: gtsrb
args: gtsrb
metrics:
- name: Accuracy
type: accuracy
value: 0.9993199591975519
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gtsrb-model
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the bazyl/GTSRB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0034
- Accuracy: 0.9993
## Model description
The German Traffic Sign Benchmark is a multi-class, single-image classification challenge held at the International Joint Conference on Neural Networks (IJCNN) 2011. We cordially invite researchers from relevant fields to participate: The competition is designed to allow for participation without special domain knowledge. Our benchmark has the following properties:
- Single-image, multi-class classification problem
- More than 40 classes
- More than 50,000 images in total
- Large, lifelike database
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2593 | 1.0 | 4166 | 0.1585 | 0.9697 |
| 0.2659 | 2.0 | 8332 | 0.0472 | 0.9900 |
| 0.2825 | 3.0 | 12498 | 0.0155 | 0.9971 |
| 0.0953 | 4.0 | 16664 | 0.0113 | 0.9983 |
| 0.1277 | 5.0 | 20830 | 0.0076 | 0.9985 |
| 0.0816 | 6.0 | 24996 | 0.0047 | 0.9988 |
| 0.0382 | 7.0 | 29162 | 0.0041 | 0.9990 |
| 0.0983 | 8.0 | 33328 | 0.0059 | 0.9990 |
| 0.1746 | 9.0 | 37494 | 0.0034 | 0.9993 |
| 0.1153 | 10.0 | 41660 | 0.0038 | 0.9990 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.12.0
- Datasets 2.3.2
- Tokenizers 0.12.1
|