Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

This model is a straightforward copy of the original 3B parameter model, but only with the following models:

Thanks to Green-Sky for also providing similar work.

  • HF to GGUF converted model in f16 precision -> model_f16.gguf
    • It was converted using llama.cpp with this specific commit.
    • Command: python3 path_to_llama_cpp/convert_hf_to_gguf.py --outfile ./model_f16.gguf --outtype f16
  • quantized (GGUF version) in Q1_3 format
    • Quantization is done via llama-quantize on that same commit.
  • quantized (GGUF version) in Q2_2 format
    • Quantization is done via llama-quantize on that same commit.

Please keep in mind that if you want to test this model through llama-cli on Metal (e.g., MacBook Pro with M3 Pro, as I did) you would need to use the --n-gpu-layers 0 flag, otherwise the following error will occur:

/Users/basavyr/Repos/external/llama.cpp/llama-cli -m model_quant_Q2_2.gguf -p "hey there"
Log start
main: build = 3505 (45719a24)
main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
main: seed  = 1724230525
llama_model_loader: loaded meta data with 30 key-value pairs and 470 tensors from model_quant_Q2_2.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.

.........................................................................................
llama_new_context_with_model: n_ctx      = 2048
llama_new_context_with_model: n_batch    = 2048
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M3 Pro
ggml_metal_init: picking default device: Apple M3 Pro
ggml_metal_init: using embedded metal library
ggml_metal_init: GPU name:   Apple M3 Pro
ggml_metal_init: GPU family: MTLGPUFamilyApple9  (1009)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3  (5001)
ggml_metal_init: simdgroup reduction support   = true
ggml_metal_init: simdgroup matrix mul. support = true
ggml_metal_init: hasUnifiedMemory              = true
ggml_metal_init: recommendedMaxWorkingSetSize  = 12884.92 MB
llama_kv_cache_init:      Metal KV buffer size =   650.00 MiB
llama_new_context_with_model: KV self size  =  650.00 MiB, K (f16):  325.00 MiB, V (f16):  325.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.12 MiB
llama_new_context_with_model:      Metal compute buffer size =   157.00 MiB
llama_new_context_with_model:        CPU compute buffer size =    62.50 MiB
llama_new_context_with_model: graph nodes  = 1124
llama_new_context_with_model: graph splits = 3
ggml/src/ggml-metal.m:1612: MUL MAT-MAT not implemented
ggml/src/ggml-metal.m:1612: MUL MAT-MAT not implemented[1]    26436 abort      /Users/basavyr/Repos/external/llama.cpp/llama-cli -m model_quant_Q2_2.gguf -p
Downloads last month
28
GGUF
Model size
3.32B params
Architecture
bitnet

16-bit

Inference API
Unable to determine this model's library. Check the docs .