Text Generation
Transformers
File size: 4,226 Bytes
ae4b0b1
 
 
 
 
 
 
 
b777728
ae4b0b1
b777728
ae4b0b1
b777728
 
ae4b0b1
b777728
 
ae4b0b1
b777728
ae4b0b1
b777728
ae4b0b1
b777728
 
 
 
 
 
 
 
ae4b0b1
b777728
ae4b0b1
b777728
 
 
 
ae4b0b1
b777728
ae4b0b1
b777728
ae4b0b1
b777728
ae4b0b1
b777728
ae4b0b1
b777728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae4b0b1
b777728
 
 
ae4b0b1
b777728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae4b0b1
 
b777728
 
 
ae4b0b1
b777728
 
 
 
 
 
 
 
 
 
 
ae4b0b1
b777728
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: other
license_name: deepseek
datasets:
- ise-uiuc/Magicoder-OSS-Instruct-75K
library_name: transformers
pipeline_tag: text-generation
---
# 🎩 Magicoder: Source Code Is All You Need

> Refer to our GitHub repo [ise-uiuc/magicoder](https://github.com/ise-uiuc/magicoder/) for an up-to-date introduction to the Magicoder family!

* 🎩**Magicoder** is a model family empowered by πŸͺ„**OSS-Instruct**, a novel approach to enlightening LLMs with open-source code snippets for generating *low-bias* and *high-quality* instruction data for code.
* πŸͺ„**OSS-Instruct** mitigates the *inherent bias* of the LLM-synthesized instruction data by empowering them with *a wealth of open-source references* to produce more diverse, realistic, and controllable data.

![Overview of OSS-Instruct](assets/overview.svg)
![Overview of Result](assets/result.png)

## Model Details

### Model Description

* **Developed by:**
[Yuxiang Wei](https://yuxiang.cs.illinois.edu),
[Zhe Wang](https://github.com/zhewang2001),
[Jiawei Liu](https://jiawei-site.github.io),
[Yifeng Ding](https://yifeng-ding.com),
[Lingming Zhang](https://lingming.cs.illinois.edu)
* **License:** [DeepSeek](https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL)
* **Finetuned from model:** [deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base)

### Model Sources

* **Repository:** <https://github.com/ise-uiuc/magicoder>
* **Paper:** <https://arxiv.org/abs/2312.02120>
* **Demo (powered by [Gradio](https://www.gradio.app)):**
<https://github.com/ise-uiuc/magicoder/tree/main/demo>

### Training Data

* [Magicoder-OSS-Instruct-75K](https://huggingface.co/datasets/ise-uiuc/Magicoder_oss_instruct_75k): generated through **OSS-Instruct** using `gpt-3.5-turbo-1106` and used to train both Magicoder and Magicoder-S series.

## Uses

### Direct Use

Magicoders are designed and best suited for **coding tasks**.

### Out-of-Scope Use

Magicoders may not work well in non-coding tasks.

## Bias, Risks, and Limitations

Magicoders may sometimes make errors, producing misleading contents, or struggle to manage tasks that are not related to coding.

### Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

## How to Get Started with the Model

Use the code below to get started with the model. Make sure you installed the [transformers](https://huggingface.co/docs/transformers/index) library.

```python
from transformers import pipeline
import torch

MAGICODER_PROMPT = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.

@@ Instruction
{instruction}

@@ Response
"""

instruction = <Your code instruction here>

prompt = MAGICODER_PROMPT.format(instruction=instruction)
generator = pipeline(
    model="ise-uiuc/Magicoder-DS-6.7B",
    task="text-generation",
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
result = generator(prompt, max_length=1024, num_return_sequences=1, temperature=0.0)
print(result[0]["generated_text"])
```

## Technical Details

Refer to our GitHub repo: [ise-uiuc/magicoder](https://github.com/ise-uiuc/magicoder/).

## πŸ“ Citation

```bibtex
@misc{magicoder,
    title={Magicoder: Source Code Is All You Need}, 
    author={Yuxiang Wei and Zhe Wang and Jiawei Liu and Yifeng Ding and Lingming Zhang},
    year={2023},
    eprint={2312.02120},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

## πŸ™ Acknowledgements

* [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder): Evol-Instruct
* [DeepSeek-Coder](https://github.com/deepseek-ai/DeepSeek-Coder): Base model for Magicoder-DS
* [CodeLlama](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/): Base model for Magicoder-CL
* [StarCoder](https://arxiv.org/abs/2305.06161): Data decontamination

## Important Note

Magicoder models are trained on the synthetic data generated by OpenAI models. Please pay attention to OpenAI's [terms of use](https://openai.com/policies/terms-of-use) when using the models and the datasets. Magicoders will not compete with OpenAI's commercial products.