File size: 4,937 Bytes
9bda421 1895014 9bda421 aa3528c 1895014 9bda421 aa3528c 9bda421 1930a84 aa3528c 9bda421 aa3528c 9bda421 aa3528c 9bda421 aa3528c 9bda421 e050aee 9bda421 e050aee 9bda421 aa3528c 9bda421 aa3528c 9bda421 e050aee 9bda421 aa3528c 9bda421 aa3528c 9bda421 aa3528c 9bda421 aa3528c 9bda421 1895014 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
language:
- en
license: cc-by-4.0
library_name: transformers
tags:
- llm
- 7b
datasets:
- jondurbin/truthy-dpo-v0.1
model-index:
- name: jaskier-7b-dpo-v6.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.29
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bardsai/jaskier-7b-dpo-v6.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.89
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bardsai/jaskier-7b-dpo-v6.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.39
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bardsai/jaskier-7b-dpo-v6.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 77.47
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bardsai/jaskier-7b-dpo-v6.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bardsai/jaskier-7b-dpo-v6.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bardsai/jaskier-7b-dpo-v6.1
name: Open LLM Leaderboard
---
# Jaskier-7b-dpo-v5.6
<figure>
![Jaskier](Bard.jpeg)
</figure>
**This is work-in-progress model, may not be ready for production use**
Model based on `bardsai/jaskier-7b-dpo-v5.6` (downstream version of Mistral7B) finetuned using Direct Preference Optimization on argilla/distilabel-math-preference-dpo.
## How to use
You can use this model directly with a Hugging Face pipeline:
```python
from transformers import pipeline, Conversation
import torch
base_model_name = "bardsai/jaskier-7b-dpo-v6.1"
chatbot = pipeline("conversational", model=base_model_name, torch_dtype=torch.float16, device_map="auto")
conversation = Conversation("Can Poland into space?")
conversation = chatbot(conversation)
print(conversation.messages[-1]["content"])
```
## Output
"Poland, as a nation, doesn't physically travel to space. However, Poland has contributed to the field of space exploration through its scientists, engineers, and collaborations with international space agencies. The Polish Space Agency, established in 2016, aims to promote and coordinate the country's space activities."
## Changelog
- 2024-02-20: Initial release
## About bards.ai
At bards.ai, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: bards.ai
Let us know if you use our model :). Also, if you need any help, feel free to contact us at info@bards.ai
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_bardsai__jaskier-7b-dpo-v6.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.36|
|AI2 Reasoning Challenge (25-Shot)|73.29|
|HellaSwag (10-Shot) |88.89|
|MMLU (5-Shot) |64.39|
|TruthfulQA (0-shot) |77.47|
|Winogrande (5-shot) |84.69|
|GSM8k (5-shot) |69.45|
|