File size: 2,408 Bytes
4f1153c
 
 
 
 
f4c4f24
4f1153c
 
 
f4c4f24
 
 
 
 
 
 
 
 
4f1153c
 
 
 
 
 
 
 
 
 
f4c4f24
4f1153c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- barc0/transduction_heavy_100k_jsonl
- barc0/transduction_heavy_suggestfunction_100k_jsonl
- barc0/transduction_rearc_dataset_400k
- barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems
- barc0/transduction_angmented_100k_gpt4o-mini_generated_problems
model-index:
- name: engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the barc0/transduction_heavy_100k_jsonl, the barc0/transduction_heavy_suggestfunction_100k_jsonl, the barc0/transduction_rearc_dataset_400k, the barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems and the barc0/transduction_angmented_100k_gpt4o-mini_generated_problems datasets.
It achieves the following results on the evaluation set:
- Loss: 0.0219

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.0378        | 1.0   | 3729  | 0.0330          |
| 0.0234        | 2.0   | 7458  | 0.0227          |
| 0.0116        | 3.0   | 11187 | 0.0219          |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1