File size: 2,408 Bytes
4f1153c f4c4f24 4f1153c f4c4f24 4f1153c f4c4f24 4f1153c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- barc0/transduction_heavy_100k_jsonl
- barc0/transduction_heavy_suggestfunction_100k_jsonl
- barc0/transduction_rearc_dataset_400k
- barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems
- barc0/transduction_angmented_100k_gpt4o-mini_generated_problems
model-index:
- name: engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the barc0/transduction_heavy_100k_jsonl, the barc0/transduction_heavy_suggestfunction_100k_jsonl, the barc0/transduction_rearc_dataset_400k, the barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems and the barc0/transduction_angmented_100k_gpt4o-mini_generated_problems datasets.
It achieves the following results on the evaluation set:
- Loss: 0.0219
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.0378 | 1.0 | 3729 | 0.0330 |
| 0.0234 | 2.0 | 7458 | 0.0227 |
| 0.0116 | 3.0 | 11187 | 0.0219 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
|