File size: 3,901 Bytes
2831873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
description: Merging MISCHIEVOUS-12B-Mix models with sliced slerp

# Metadata and Rationale
model_description: |
  This configuration merges two versions of the MISCHIEVOUS-12B-Mix model: 0.4v and 0.3v.
  0.3v was further fine-tuned on a specific dataset (ADD DATASET NAME HERE if known).
  The sliced slerp approach allows for layer-specific control over the merging process.

base_model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
dtype: bfloat16
merge_method: slerp
tokenizer_source: union

# Slices Configuration (Layer-Specific Merging)
slices:
  - sources:
      - model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
        layer_range: [0, 10]
      - model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
        layer_range: [0, 10]
    parameters:
      t:
        - name: self_attn
          value: [0.8, 0.85, 0.9, 0.95, 1.0]
        - name: mlp
          value: [0.9, 0.95, 1.0, 1.05, 1.1]
        - name: layer_norm
          value: [0.6, 0.65, 0.7, 0.75, 0.8]
        - name: embed_tokens
          value: [1.0]

  - sources:
      - model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
        layer_range: [10, 20]
      - model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
        layer_range: [10, 20]
    parameters:
      t:
        - name: self_attn
          value: [0.7, 0.75, 0.8, 0.85, 0.9]
        - name: mlp
          value: [1.0, 0.95, 0.9, 0.85, 0.8]
        - name: layer_norm
          value: [0.5, 0.55, 0.6, 0.65, 0.7]
        - name: embed_tokens
          value: [1.0]

  - sources:
      - model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
        layer_range: [20, 30]
      - model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
        layer_range: [20, 30]
    parameters:
      t:
        - name: self_attn
          value: [0.6, 0.65, 0.7, 0.75, 0.8]
        - name: mlp
          value: [0.8, 0.75, 0.7, 0.65, 0.6]
        - name: layer_norm
          value: [0.4, 0.45, 0.5, 0.55, 0.6]
        - name: embed_tokens
          value: [1.0]

  - sources:
      - model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
        layer_range: [30, 40]
      - model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
        layer_range: [30, 40]
    parameters:
      t:
        - name: self_attn
          value: [0.9, 1.0, 1.1, 1.2, 1.3]
        - name: mlp
          value: [0.7, 0.65, 0.6, 0.55, 0.5]
        - name: layer_norm
          value: [0.7, 0.75, 0.8, 0.85, 0.9]
        - name: embed_tokens
          value: [1.0]

# Regularization (Prevent Overfitting During Merging)
regularization:
  - method: weight_clipping
    clip_range: [-0.2, 0.2]
  - method: random_noise
    scale: 0.015
  - method: l2_norm
    scale: 0.01

# Postprocessing (Enhance Merged Model Quality)
postprocessing:
  - operation: random_noise
    scale: 0.0025
  - operation: non_linear_scaling
    parameters:
      function: tanh
  - operation: sharpening
    intensity: 0.3
  - operation: gaussian_smoothing
    sigma: 1.5
  - operation: smoothing
    parameters:
      adaptive: true
      range: [0.8, 1.2]
      kernel_size: 5
  - operation: normalize
  - operation: dynamic_scaling
    scale_range: [0.75, 1.25]

# Evaluation (Crucial for Assessing Merge Quality)
evaluation:
  metrics:
    - perplexity
    - accuracy # If applicable (e.g., classification tasks)
    - bleu # For translation tasks
    - rouge # For summarization tasks
  datasets:
    - wikitext # General language understanding
    - lambada # Long-range dependency modeling
    - (ADD RELEVANT TASK-SPECIFIC DATASETS HERE)
  prompts: # Example prompts – REPLACE WITH YOUR OWN
    - "The quick brown fox jumps over the lazy dog."
    - "Translate 'Thank you' to Spanish:"
    - "Write a short summary of the French Revolution."

# Logging and Output
logging:
  output_dir: ./merged_models
  log_level: INFO

# Optional: Ties Merging (Advanced Technique)
# ties:
#   enabled: true
#   method: greedy # Or "optimal", "random"
#   layers: [0, 10, 20, 30] # Example layers for ties merging