File size: 4,623 Bytes
2831873 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
base_model:
- bamec66557/MISCHIEVOUS-12B-Mix_0.4v
- bamec66557/MISCHIEVOUS-12B-Mix_0.5v
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [bamec66557/MISCHIEVOUS-12B-Mix_0.4v](https://huggingface.co/bamec66557/MISCHIEVOUS-12B-Mix_0.4v)
* [bamec66557/MISCHIEVOUS-12B-Mix_0.5v](https://huggingface.co/bamec66557/MISCHIEVOUS-12B-Mix_0.5v)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
description: Merging MISCHIEVOUS-12B-Mix models with sliced slerp
# Metadata and Rationale
model_description: |
This configuration merges two versions of the MISCHIEVOUS-12B-Mix model: 0.4v and 0.3v.
0.3v was further fine-tuned on a specific dataset (ADD DATASET NAME HERE if known).
The sliced slerp approach allows for layer-specific control over the merging process.
base_model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
dtype: bfloat16
merge_method: slerp
tokenizer_source: union
# Slices Configuration (Layer-Specific Merging)
slices:
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [0, 10]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [0, 10]
parameters:
t:
- name: self_attn
value: [0.8, 0.85, 0.9, 0.95, 1.0]
- name: mlp
value: [0.9, 0.95, 1.0, 1.05, 1.1]
- name: layer_norm
value: [0.6, 0.65, 0.7, 0.75, 0.8]
- name: embed_tokens
value: [1.0]
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [10, 20]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [10, 20]
parameters:
t:
- name: self_attn
value: [0.7, 0.75, 0.8, 0.85, 0.9]
- name: mlp
value: [1.0, 0.95, 0.9, 0.85, 0.8]
- name: layer_norm
value: [0.5, 0.55, 0.6, 0.65, 0.7]
- name: embed_tokens
value: [1.0]
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [20, 30]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [20, 30]
parameters:
t:
- name: self_attn
value: [0.6, 0.65, 0.7, 0.75, 0.8]
- name: mlp
value: [0.8, 0.75, 0.7, 0.65, 0.6]
- name: layer_norm
value: [0.4, 0.45, 0.5, 0.55, 0.6]
- name: embed_tokens
value: [1.0]
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [30, 40]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [30, 40]
parameters:
t:
- name: self_attn
value: [0.9, 1.0, 1.1, 1.2, 1.3]
- name: mlp
value: [0.7, 0.65, 0.6, 0.55, 0.5]
- name: layer_norm
value: [0.7, 0.75, 0.8, 0.85, 0.9]
- name: embed_tokens
value: [1.0]
# Regularization (Prevent Overfitting During Merging)
regularization:
- method: weight_clipping
clip_range: [-0.2, 0.2]
- method: random_noise
scale: 0.015
- method: l2_norm
scale: 0.01
# Postprocessing (Enhance Merged Model Quality)
postprocessing:
- operation: random_noise
scale: 0.0025
- operation: non_linear_scaling
parameters:
function: tanh
- operation: sharpening
intensity: 0.3
- operation: gaussian_smoothing
sigma: 1.5
- operation: smoothing
parameters:
adaptive: true
range: [0.8, 1.2]
kernel_size: 5
- operation: normalize
- operation: dynamic_scaling
scale_range: [0.75, 1.25]
# Evaluation (Crucial for Assessing Merge Quality)
evaluation:
metrics:
- perplexity
- accuracy # If applicable (e.g., classification tasks)
- bleu # For translation tasks
- rouge # For summarization tasks
datasets:
- wikitext # General language understanding
- lambada # Long-range dependency modeling
- (ADD RELEVANT TASK-SPECIFIC DATASETS HERE)
prompts: # Example prompts – REPLACE WITH YOUR OWN
- "The quick brown fox jumps over the lazy dog."
- "Translate 'Thank you' to Spanish:"
- "Write a short summary of the French Revolution."
# Logging and Output
logging:
output_dir: ./merged_models
log_level: INFO
# Optional: Ties Merging (Advanced Technique)
# ties:
# enabled: true
# method: greedy # Or "optimal", "random"
# layers: [0, 10, 20, 30] # Example layers for ties merging
```
|