File size: 2,303 Bytes
9c4bbdc 24c83c6 9c4bbdc 24c83c6 9c4bbdc 82814d1 0a1f11e 495f99b b0814ac 1dbf572 cee2f14 ca8b9bc dfc0234 8e6376f d940e5f 63b9550 e1db6bf 51c0b37 246039f 24c83c6 9c4bbdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: mit
base_model: badokorach/mobilebert-uncased-finetuned-agic-031223
tags:
- generated_from_keras_callback
model-index:
- name: badokorach/mobilebert-uncased-finetuned-agric-trans-290124
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# badokorach/mobilebert-uncased-finetuned-agric-trans-290124
This model is a fine-tuned version of [badokorach/mobilebert-uncased-finetuned-agic-031223](https://huggingface.co/badokorach/mobilebert-uncased-finetuned-agic-031223) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0006
- Validation Loss: 0.0
- Epoch: 14
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 2280, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.3391 | 0.0 | 0 |
| 0.0305 | 0.0 | 1 |
| 0.0150 | 0.0 | 2 |
| 0.0107 | 0.0 | 3 |
| 0.0056 | 0.0 | 4 |
| 0.0038 | 0.0 | 5 |
| 0.0036 | 0.0 | 6 |
| 0.0020 | 0.0 | 7 |
| 0.0007 | 0.0 | 8 |
| 0.0008 | 0.0 | 9 |
| 0.0005 | 0.0 | 10 |
| 0.0015 | 0.0 | 11 |
| 0.0007 | 0.0 | 12 |
| 0.0004 | 0.0 | 13 |
| 0.0006 | 0.0 | 14 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1
|