File size: 24,585 Bytes
6ec18a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import random
import pdb
from einops import rearrange
from typing import List, Optional, Tuple, Union
import os

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
import transformers.models.opt.modeling_opt as modeling_opt
from transformers.models.opt.modeling_opt\
        import OPTDecoderLayer, OPTPreTrainedModel, OPTConfig
from transformers import ViTModel
from .utils import exists, freeze_all_layers_, unfreeze_all_layers_
from .flamingo_pytorch import GatedCrossAttentionBlock, PerceiverResampler


class OPTLearnedPositionalEmbedding(nn.Embedding):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

    def __init__(self, num_embeddings: int, embedding_dim: int):
        # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models don't have this hack
        self.offset = 2
        super().__init__(num_embeddings + self.offset, embedding_dim)

    def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0):
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        attention_mask = attention_mask.long()

        # create positions depending on attention_mask
        positions = torch.cumsum(attention_mask, dim=1)
        positions = (positions.type_as(attention_mask) * attention_mask).long() - 1

        # cut positions if `past_key_values_length` is > 0
        positions = positions[:, past_key_values_length:]

        return super().forward(positions + self.offset)


class OPTDecoder(modeling_opt.OPTDecoder):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`]

    Args:
        config: OPTConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config: OPTConfig):
        OPTPreTrainedModel.__init__(self, config)
        self.dropout = config.dropout
        self.layerdrop = config.layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.vocab_size = config.vocab_size
        self.media_token_id = config.media_token_id

        self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
        self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)

        if config.word_embed_proj_dim != config.hidden_size:
            self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
        else:
            self.project_out = None

        if config.word_embed_proj_dim != config.hidden_size:
            self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
        else:
            self.project_in = None

        # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
        # with checkpoints that have been fine-tuned before transformers v4.20.1
        # see https://github.com/facebookresearch/metaseq/pull/164
        if config.do_layer_norm_before and not config._remove_final_layer_norm:
            self.final_layer_norm = nn.LayerNorm(config.hidden_size)
        else:
            self.final_layer_norm = None

        dim_head = config.hidden_size // config.num_attention_heads
        if not config.id_perceiver:
            self.perceiver_resampler = PerceiverResampler(
                dim=config.hidden_size,
                depth=config.perceiver_depth,
                dim_head=dim_head,
                heads=config.num_attention_heads,
                num_latents=config.perceiver_num_latents,
                inp_dim=config.inp_dim,
            )
        else:
            if config.inp_dim is None:
                self.perceiver_resampler = nn.Identity()
            else:
                self.perceiver_resampler = nn.Linear(
                        config.inp_dim, config.hidden_size, 
                        bias=False)
        self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.gated_attn_layers = nn.ModuleList(
                [GatedCrossAttentionBlock(
                    dim=config.hidden_size, dim_head=dim_head, heads=config.num_attention_heads, 
                    only_attend_immediate_media=config.only_attend_immediate_media)\
                 if not (ind % config.cross_attn_every) else None \
                 for ind in range(config.num_hidden_layers)])

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

        # in flamingo mode, freeze everything but perceiver and gated cross attention
        if not config.finetune_LM:
            freeze_all_layers_(self)
            unfreeze_all_layers_(self.perceiver_resampler)
            [unfreeze_all_layers_(cross_attn) for cross_attn in self.gated_attn_layers if exists(cross_attn)]

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        pixel_values=None,
        image_embeds=None
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.

            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
        batch, device = input_ids.shape[0], input_ids.device

        flamingo_mode = exists(pixel_values) or exists(image_embeds)

        # derive the media token ids (as a boolean tensor), for calculating the masked cross attention
        if flamingo_mode:
            media_locations = input_ids == self.media_token_id

        assert not (exists(pixel_values) and exists(image_embeds))
        # encode images into embeddings
        # with the img_encoder passed in at init
        # it can also accept precomputed image embeddings

        if exists(pixel_values):
            assert exists(self.img_encoder), 'img_encoder must be passed in for automatic image encoding'
            if len(pixel_values.shape) == 4:
                pixel_values = torch.unsqueeze(pixel_values, 1)
            pixel_values = rearrange(pixel_values, 'b t ... -> (b t) ...')

            with torch.no_grad():
                if getattr(self.img_encoder, 'vision_model', None) is not None:
                    image_outputs = self.img_encoder.vision_model(
                            pixel_values=pixel_values,
                            output_hidden_states=True, return_dict=True)
                else:
                    image_outputs = self.img_encoder(
                            pixel_values=pixel_values,
                            output_hidden_states=True, return_dict=True)

            image_embeds = image_outputs['last_hidden_state']
            image_embeds = rearrange(image_embeds, '(b t) ... -> b t ...', b = batch)

        if exists(image_embeds):
            image_embeds = self.perceiver_resampler(image_embeds)

        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(inputs_embeds.shape[:2], dtype=torch.bool, device=inputs_embeds.device)
        pos_embeds = self.embed_positions(attention_mask, past_key_values_length)

        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, input_shape, inputs_embeds, past_key_values_length
        )

        if self.project_in is not None:
            inputs_embeds = self.project_in(inputs_embeds)

        hidden_states = inputs_embeds + pos_embeds
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        # check if head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
            if attn_mask is not None:
                if attn_mask.size()[0] != (len(self.layers)):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {head_mask.size()[0]}."
                    )

        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):
                continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            flamingo_cross_attn = self.gated_attn_layers[idx]
            if exists(flamingo_cross_attn) and exists(image_embeds):
                hidden_states = flamingo_cross_attn(
                    hidden_states,
                    image_embeds,
                    media_locations = media_locations
                )

            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        if self.final_layer_norm is not None:
            hidden_states = self.final_layer_norm(hidden_states)

        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class OPTModel(modeling_opt.OPTModel):
    def __init__(self, config: OPTConfig):
        OPTPreTrainedModel.__init__(self, config)
        self.decoder = OPTDecoder(config)

        # Initialize weights and apply final processing
        self.post_init()


class OPTForCausalLM(modeling_opt.OPTForCausalLM):
    _keys_to_ignore_on_load_missing = [r"lm_head.weight"]

    def __init__(self, config):
        OPTPreTrainedModel.__init__(self, config)
        self.model = OPTModel(config)

        # the lm_head weight is automatically tied to the embed tokens weight
        self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()


def set_default_if_nonexist(config, key, value):
    if getattr(config, key, None) is None:
        setattr(config, key, value)
    return config


def setup_default_flamingo_configs(config):
    set_default_if_nonexist(config, 'perceiver_depth', 2)
    set_default_if_nonexist(config, 'perceiver_num_latents', 64)
    set_default_if_nonexist(config, 'cross_attn_every', 3)
    set_default_if_nonexist(config, 'only_attend_immediate_media', True)
    set_default_if_nonexist(config, 'media_token_id', 50265)
    set_default_if_nonexist(config, 'inp_dim', 768)
    set_default_if_nonexist(config, 'finetune_LM', True)
    set_default_if_nonexist(config, 'id_perceiver', False)
    return config


class FlamingoForCausalLM(modeling_opt.OPTForCausalLM):
    _keys_to_ignore_on_load_missing = [
            r"lm_head.weight",
            ]

    def __init__(self, config):
        OPTPreTrainedModel.__init__(self, config)
        config = setup_default_flamingo_configs(config)
        self.model = OPTModel(config)

        # the lm_head weight is automatically tied to the embed tokens weight
        self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()
        self.model.decoder.img_encoder = None
        self.loss_fct = CrossEntropyLoss()
        dino_model = ViTModel.from_pretrained("facebook/dino-vitb16")
        self.setup_vis_encoder(dino_model)

    def setup_vis_encoder(self, img_encoder):
        self.model.decoder.img_encoder = img_encoder
        freeze_all_layers_(img_encoder)
        
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        *args, **kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
                tensors are only required when the model is used as a decoder in a Sequence to Sequence model.

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.

        Returns:

        Example:

        ```python
        >>> from transformers import GPT2Tokenizer, OPTForCausalLM

        >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
        >>> tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-350m")

        >>> prompt = "Hey, are you consciours? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            *args, **kwargs)

        logits = self.lm_head(outputs[0]).contiguous()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss = self.loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )