File size: 2,784 Bytes
9c9adcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a995b1
 
 
 
 
 
 
9c9adcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a995b1
 
 
 
 
 
 
 
 
 
9c9adcc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: hubert-base-ls960-finetuned-common_voice
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-base-ls960-finetuned-common_voice

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0353
- Accuracy: 1.0
- F1: 1.0
- Recall: 1.0
- Precision: 1.0
- Mcc: 1.0
- Auc: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Recall | Precision | Mcc    | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:|
| 0.1939        | 0.96  | 12   | 0.0971          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.2049        | 2.0   | 25   | 0.0784          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.1763        | 2.96  | 37   | 0.0645          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.1441        | 4.0   | 50   | 0.0972          | 0.985    | 0.9850 | 0.985  | 0.9860    | 0.9815 | 0.9994 |
| 0.1264        | 4.96  | 62   | 0.0627          | 0.9925   | 0.9925 | 0.9925 | 0.9928    | 0.9907 | 1.0    |
| 0.1148        | 6.0   | 75   | 0.0426          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.1114        | 6.96  | 87   | 0.0394          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.0911        | 8.0   | 100  | 0.0365          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.078         | 8.96  | 112  | 0.0358          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.0797        | 9.6   | 120  | 0.0353          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1