File size: 13,993 Bytes
86e77ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: 6_e_200-tiny_tobacco3482_kd_CEKD_t5.0_a0.5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 6_e_200-tiny_tobacco3482_kd_CEKD_t5.0_a0.5

This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3932
- Accuracy: 0.83
- Brier Loss: 0.2507
- Nll: 1.3117
- F1 Micro: 0.83
- F1 Macro: 0.8164
- Ece: 0.1915
- Aurc: 0.0602

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll    | F1 Micro | F1 Macro | Ece    | Aurc   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log        | 1.0   | 25   | 1.5453          | 0.21     | 0.8721     | 5.2626 | 0.2100   | 0.1784   | 0.2602 | 0.7492 |
| No log        | 2.0   | 50   | 0.9799          | 0.515    | 0.6132     | 2.7421 | 0.515    | 0.4183   | 0.2927 | 0.2698 |
| No log        | 3.0   | 75   | 0.7948          | 0.655    | 0.4888     | 2.6042 | 0.655    | 0.5597   | 0.2331 | 0.1485 |
| No log        | 4.0   | 100  | 0.6422          | 0.735    | 0.3906     | 1.6168 | 0.735    | 0.6662   | 0.2448 | 0.1095 |
| No log        | 5.0   | 125  | 0.6261          | 0.785    | 0.3475     | 1.1890 | 0.785    | 0.7582   | 0.2616 | 0.0792 |
| No log        | 6.0   | 150  | 0.6060          | 0.775    | 0.3402     | 1.3317 | 0.775    | 0.7269   | 0.2750 | 0.0709 |
| No log        | 7.0   | 175  | 0.5659          | 0.8      | 0.3459     | 1.4773 | 0.8000   | 0.7741   | 0.2628 | 0.0960 |
| No log        | 8.0   | 200  | 0.5339          | 0.81     | 0.3038     | 1.5029 | 0.81     | 0.7882   | 0.2449 | 0.0699 |
| No log        | 9.0   | 225  | 0.5429          | 0.805    | 0.3117     | 1.4140 | 0.805    | 0.7840   | 0.2242 | 0.0771 |
| No log        | 10.0  | 250  | 0.5337          | 0.815    | 0.3139     | 1.4630 | 0.815    | 0.8167   | 0.2253 | 0.0801 |
| No log        | 11.0  | 275  | 0.5257          | 0.815    | 0.3084     | 1.4325 | 0.815    | 0.7943   | 0.2431 | 0.0823 |
| No log        | 12.0  | 300  | 0.4704          | 0.81     | 0.2879     | 1.3557 | 0.81     | 0.7859   | 0.2139 | 0.0770 |
| No log        | 13.0  | 325  | 0.4828          | 0.81     | 0.2898     | 1.5643 | 0.81     | 0.7767   | 0.2115 | 0.0712 |
| No log        | 14.0  | 350  | 0.4579          | 0.815    | 0.2733     | 1.4403 | 0.815    | 0.8061   | 0.1799 | 0.0609 |
| No log        | 15.0  | 375  | 0.4642          | 0.815    | 0.2892     | 1.4598 | 0.815    | 0.8017   | 0.1973 | 0.0537 |
| No log        | 16.0  | 400  | 0.4378          | 0.84     | 0.2683     | 1.1278 | 0.8400   | 0.8320   | 0.2135 | 0.0545 |
| No log        | 17.0  | 425  | 0.4403          | 0.825    | 0.2750     | 1.3817 | 0.825    | 0.8024   | 0.1898 | 0.0511 |
| No log        | 18.0  | 450  | 0.4211          | 0.825    | 0.2646     | 1.5604 | 0.825    | 0.8123   | 0.1918 | 0.0538 |
| No log        | 19.0  | 475  | 0.4280          | 0.82     | 0.2700     | 1.5824 | 0.82     | 0.8016   | 0.1814 | 0.0587 |
| 0.4177        | 20.0  | 500  | 0.4223          | 0.83     | 0.2649     | 1.8744 | 0.83     | 0.8152   | 0.1885 | 0.0681 |
| 0.4177        | 21.0  | 525  | 0.4219          | 0.835    | 0.2682     | 1.6053 | 0.835    | 0.8252   | 0.1932 | 0.0600 |
| 0.4177        | 22.0  | 550  | 0.3935          | 0.835    | 0.2534     | 1.4134 | 0.835    | 0.8229   | 0.2049 | 0.0680 |
| 0.4177        | 23.0  | 575  | 0.4231          | 0.82     | 0.2651     | 1.7267 | 0.82     | 0.8028   | 0.1943 | 0.0636 |
| 0.4177        | 24.0  | 600  | 0.4135          | 0.845    | 0.2576     | 1.8708 | 0.845    | 0.8304   | 0.1872 | 0.0559 |
| 0.4177        | 25.0  | 625  | 0.4027          | 0.835    | 0.2526     | 1.5970 | 0.835    | 0.8187   | 0.1886 | 0.0645 |
| 0.4177        | 26.0  | 650  | 0.4000          | 0.835    | 0.2513     | 1.7233 | 0.835    | 0.8151   | 0.1998 | 0.0613 |
| 0.4177        | 27.0  | 675  | 0.3956          | 0.83     | 0.2478     | 1.5716 | 0.83     | 0.8143   | 0.1871 | 0.0533 |
| 0.4177        | 28.0  | 700  | 0.3952          | 0.835    | 0.2493     | 1.5638 | 0.835    | 0.8153   | 0.1942 | 0.0593 |
| 0.4177        | 29.0  | 725  | 0.3965          | 0.83     | 0.2509     | 1.5069 | 0.83     | 0.8150   | 0.1811 | 0.0594 |
| 0.4177        | 30.0  | 750  | 0.3935          | 0.835    | 0.2486     | 1.5657 | 0.835    | 0.8168   | 0.1948 | 0.0573 |
| 0.4177        | 31.0  | 775  | 0.3951          | 0.83     | 0.2498     | 1.5061 | 0.83     | 0.8146   | 0.1886 | 0.0591 |
| 0.4177        | 32.0  | 800  | 0.3940          | 0.835    | 0.2506     | 1.5054 | 0.835    | 0.8203   | 0.1991 | 0.0598 |
| 0.4177        | 33.0  | 825  | 0.3935          | 0.84     | 0.2493     | 1.5025 | 0.8400   | 0.8230   | 0.1932 | 0.0590 |
| 0.4177        | 34.0  | 850  | 0.3928          | 0.84     | 0.2485     | 1.5679 | 0.8400   | 0.8227   | 0.1981 | 0.0570 |
| 0.4177        | 35.0  | 875  | 0.3942          | 0.835    | 0.2497     | 1.5670 | 0.835    | 0.8177   | 0.1940 | 0.0592 |
| 0.4177        | 36.0  | 900  | 0.3935          | 0.835    | 0.2491     | 1.5120 | 0.835    | 0.8203   | 0.1931 | 0.0596 |
| 0.4177        | 37.0  | 925  | 0.3932          | 0.835    | 0.2496     | 1.5715 | 0.835    | 0.8203   | 0.1989 | 0.0597 |
| 0.4177        | 38.0  | 950  | 0.3924          | 0.835    | 0.2491     | 1.5091 | 0.835    | 0.8203   | 0.1973 | 0.0606 |
| 0.4177        | 39.0  | 975  | 0.3936          | 0.835    | 0.2500     | 1.5036 | 0.835    | 0.8203   | 0.1954 | 0.0602 |
| 0.0597        | 40.0  | 1000 | 0.3936          | 0.835    | 0.2497     | 1.4602 | 0.835    | 0.8203   | 0.2053 | 0.0597 |
| 0.0597        | 41.0  | 1025 | 0.3936          | 0.835    | 0.2505     | 1.5040 | 0.835    | 0.8203   | 0.2026 | 0.0607 |
| 0.0597        | 42.0  | 1050 | 0.3931          | 0.83     | 0.2500     | 1.4565 | 0.83     | 0.8164   | 0.1961 | 0.0590 |
| 0.0597        | 43.0  | 1075 | 0.3931          | 0.835    | 0.2497     | 1.5208 | 0.835    | 0.8203   | 0.1972 | 0.0591 |
| 0.0597        | 44.0  | 1100 | 0.3932          | 0.835    | 0.2503     | 1.5040 | 0.835    | 0.8203   | 0.2030 | 0.0606 |
| 0.0597        | 45.0  | 1125 | 0.3930          | 0.835    | 0.2502     | 1.4555 | 0.835    | 0.8203   | 0.1992 | 0.0604 |
| 0.0597        | 46.0  | 1150 | 0.3927          | 0.835    | 0.2500     | 1.4553 | 0.835    | 0.8203   | 0.1960 | 0.0616 |
| 0.0597        | 47.0  | 1175 | 0.3928          | 0.835    | 0.2501     | 1.3970 | 0.835    | 0.8203   | 0.1965 | 0.0610 |
| 0.0597        | 48.0  | 1200 | 0.3930          | 0.835    | 0.2498     | 1.3967 | 0.835    | 0.8203   | 0.1989 | 0.0599 |
| 0.0597        | 49.0  | 1225 | 0.3931          | 0.835    | 0.2502     | 1.4578 | 0.835    | 0.8203   | 0.1963 | 0.0606 |
| 0.0597        | 50.0  | 1250 | 0.3932          | 0.835    | 0.2504     | 1.4475 | 0.835    | 0.8203   | 0.1996 | 0.0604 |
| 0.0597        | 51.0  | 1275 | 0.3928          | 0.835    | 0.2500     | 1.3382 | 0.835    | 0.8203   | 0.2002 | 0.0609 |
| 0.0597        | 52.0  | 1300 | 0.3933          | 0.83     | 0.2502     | 1.4424 | 0.83     | 0.8164   | 0.1991 | 0.0597 |
| 0.0597        | 53.0  | 1325 | 0.3933          | 0.83     | 0.2502     | 1.3390 | 0.83     | 0.8164   | 0.1965 | 0.0604 |
| 0.0597        | 54.0  | 1350 | 0.3929          | 0.83     | 0.2502     | 1.3351 | 0.83     | 0.8164   | 0.1914 | 0.0608 |
| 0.0597        | 55.0  | 1375 | 0.3932          | 0.83     | 0.2503     | 1.3422 | 0.83     | 0.8164   | 0.1969 | 0.0608 |
| 0.0597        | 56.0  | 1400 | 0.3934          | 0.83     | 0.2506     | 1.3369 | 0.83     | 0.8164   | 0.1950 | 0.0599 |
| 0.0597        | 57.0  | 1425 | 0.3930          | 0.83     | 0.2502     | 1.3829 | 0.83     | 0.8164   | 0.1966 | 0.0603 |
| 0.0597        | 58.0  | 1450 | 0.3930          | 0.835    | 0.2503     | 1.3219 | 0.835    | 0.8203   | 0.1907 | 0.0607 |
| 0.0597        | 59.0  | 1475 | 0.3930          | 0.83     | 0.2504     | 1.3268 | 0.83     | 0.8164   | 0.1919 | 0.0599 |
| 0.0574        | 60.0  | 1500 | 0.3933          | 0.835    | 0.2505     | 1.3242 | 0.835    | 0.8203   | 0.1913 | 0.0601 |
| 0.0574        | 61.0  | 1525 | 0.3930          | 0.83     | 0.2504     | 1.3205 | 0.83     | 0.8164   | 0.1943 | 0.0607 |
| 0.0574        | 62.0  | 1550 | 0.3930          | 0.83     | 0.2504     | 1.3189 | 0.83     | 0.8164   | 0.1947 | 0.0608 |
| 0.0574        | 63.0  | 1575 | 0.3931          | 0.83     | 0.2504     | 1.3197 | 0.83     | 0.8164   | 0.1917 | 0.0600 |
| 0.0574        | 64.0  | 1600 | 0.3931          | 0.835    | 0.2505     | 1.3200 | 0.835    | 0.8203   | 0.1904 | 0.0597 |
| 0.0574        | 65.0  | 1625 | 0.3932          | 0.83     | 0.2505     | 1.3175 | 0.83     | 0.8164   | 0.1915 | 0.0601 |
| 0.0574        | 66.0  | 1650 | 0.3931          | 0.83     | 0.2506     | 1.3200 | 0.83     | 0.8164   | 0.1917 | 0.0608 |
| 0.0574        | 67.0  | 1675 | 0.3929          | 0.83     | 0.2503     | 1.3188 | 0.83     | 0.8164   | 0.1940 | 0.0598 |
| 0.0574        | 68.0  | 1700 | 0.3931          | 0.83     | 0.2505     | 1.3160 | 0.83     | 0.8164   | 0.1913 | 0.0599 |
| 0.0574        | 69.0  | 1725 | 0.3931          | 0.83     | 0.2505     | 1.3161 | 0.83     | 0.8164   | 0.1941 | 0.0598 |
| 0.0574        | 70.0  | 1750 | 0.3932          | 0.83     | 0.2506     | 1.3171 | 0.83     | 0.8164   | 0.1961 | 0.0608 |
| 0.0574        | 71.0  | 1775 | 0.3930          | 0.83     | 0.2506     | 1.3161 | 0.83     | 0.8164   | 0.1913 | 0.0602 |
| 0.0574        | 72.0  | 1800 | 0.3929          | 0.83     | 0.2505     | 1.3155 | 0.83     | 0.8164   | 0.1960 | 0.0603 |
| 0.0574        | 73.0  | 1825 | 0.3930          | 0.83     | 0.2506     | 1.3152 | 0.83     | 0.8164   | 0.1941 | 0.0601 |
| 0.0574        | 74.0  | 1850 | 0.3930          | 0.83     | 0.2506     | 1.3167 | 0.83     | 0.8164   | 0.1940 | 0.0602 |
| 0.0574        | 75.0  | 1875 | 0.3933          | 0.83     | 0.2507     | 1.3148 | 0.83     | 0.8164   | 0.1918 | 0.0600 |
| 0.0574        | 76.0  | 1900 | 0.3930          | 0.83     | 0.2505     | 1.3146 | 0.83     | 0.8164   | 0.1914 | 0.0602 |
| 0.0574        | 77.0  | 1925 | 0.3930          | 0.83     | 0.2505     | 1.3147 | 0.83     | 0.8164   | 0.1914 | 0.0598 |
| 0.0574        | 78.0  | 1950 | 0.3931          | 0.83     | 0.2506     | 1.3134 | 0.83     | 0.8164   | 0.1942 | 0.0601 |
| 0.0574        | 79.0  | 1975 | 0.3931          | 0.83     | 0.2505     | 1.3137 | 0.83     | 0.8164   | 0.1916 | 0.0598 |
| 0.0573        | 80.0  | 2000 | 0.3931          | 0.83     | 0.2506     | 1.3136 | 0.83     | 0.8164   | 0.1915 | 0.0601 |
| 0.0573        | 81.0  | 2025 | 0.3932          | 0.83     | 0.2506     | 1.3132 | 0.83     | 0.8164   | 0.1915 | 0.0607 |
| 0.0573        | 82.0  | 2050 | 0.3933          | 0.83     | 0.2507     | 1.3142 | 0.83     | 0.8164   | 0.1943 | 0.0603 |
| 0.0573        | 83.0  | 2075 | 0.3933          | 0.83     | 0.2507     | 1.3135 | 0.83     | 0.8164   | 0.1916 | 0.0603 |
| 0.0573        | 84.0  | 2100 | 0.3931          | 0.83     | 0.2506     | 1.3124 | 0.83     | 0.8164   | 0.1914 | 0.0601 |
| 0.0573        | 85.0  | 2125 | 0.3931          | 0.83     | 0.2507     | 1.3128 | 0.83     | 0.8164   | 0.1915 | 0.0602 |
| 0.0573        | 86.0  | 2150 | 0.3931          | 0.83     | 0.2506     | 1.3128 | 0.83     | 0.8164   | 0.1916 | 0.0602 |
| 0.0573        | 87.0  | 2175 | 0.3932          | 0.83     | 0.2507     | 1.3130 | 0.83     | 0.8164   | 0.1943 | 0.0602 |
| 0.0573        | 88.0  | 2200 | 0.3932          | 0.83     | 0.2507     | 1.3123 | 0.83     | 0.8164   | 0.1915 | 0.0602 |
| 0.0573        | 89.0  | 2225 | 0.3932          | 0.83     | 0.2507     | 1.3123 | 0.83     | 0.8164   | 0.1915 | 0.0599 |
| 0.0573        | 90.0  | 2250 | 0.3931          | 0.83     | 0.2507     | 1.3119 | 0.83     | 0.8164   | 0.1915 | 0.0602 |
| 0.0573        | 91.0  | 2275 | 0.3932          | 0.83     | 0.2507     | 1.3121 | 0.83     | 0.8164   | 0.1915 | 0.0602 |
| 0.0573        | 92.0  | 2300 | 0.3932          | 0.83     | 0.2507     | 1.3117 | 0.83     | 0.8164   | 0.1915 | 0.0601 |
| 0.0573        | 93.0  | 2325 | 0.3931          | 0.83     | 0.2507     | 1.3117 | 0.83     | 0.8164   | 0.1915 | 0.0602 |
| 0.0573        | 94.0  | 2350 | 0.3932          | 0.83     | 0.2507     | 1.3120 | 0.83     | 0.8164   | 0.1915 | 0.0602 |
| 0.0573        | 95.0  | 2375 | 0.3932          | 0.83     | 0.2507     | 1.3120 | 0.83     | 0.8164   | 0.1916 | 0.0602 |
| 0.0573        | 96.0  | 2400 | 0.3932          | 0.83     | 0.2507     | 1.3119 | 0.83     | 0.8164   | 0.1915 | 0.0602 |
| 0.0573        | 97.0  | 2425 | 0.3932          | 0.83     | 0.2507     | 1.3118 | 0.83     | 0.8164   | 0.1915 | 0.0601 |
| 0.0573        | 98.0  | 2450 | 0.3932          | 0.83     | 0.2507     | 1.3117 | 0.83     | 0.8164   | 0.1915 | 0.0602 |
| 0.0573        | 99.0  | 2475 | 0.3932          | 0.83     | 0.2507     | 1.3118 | 0.83     | 0.8164   | 0.1915 | 0.0602 |
| 0.0573        | 100.0 | 2500 | 0.3932          | 0.83     | 0.2507     | 1.3117 | 0.83     | 0.8164   | 0.1915 | 0.0602 |


### Framework versions

- Transformers 4.30.2
- Pytorch 1.13.1
- Datasets 2.13.1
- Tokenizers 0.13.3