ayameRushia's picture
Update README.md
bceaf11
|
raw
history blame
2.8 kB
metadata
language: id
widget:
  - text: Entah mengapa saya merasakan ada sesuatu yang janggal di produk ini
license: mit
tags:
  - generated_from_trainer
datasets:
  - indonlu
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: indobert-base-uncased-finetuned-indonlu-smsa
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: indonlu
          type: indonlu
          args: smsa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9301587301587302
          - name: F1
            type: f1
            value: 0.9066105299178986
          - name: Precision
            type: precision
            value: 0.8992078788375845
          - name: Recall
            type: recall
            value: 0.9147307323234121

indobert-base-uncased-finetuned-indonlu-smsa

This model is a fine-tuned version of indolem/indobert-base-uncased on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2277
  • Accuracy: 0.9302
  • F1: 0.9066
  • Precision: 0.8992
  • Recall: 0.9147

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 344 0.3831 0.8476 0.7715 0.7817 0.7627
0.4167 2.0 688 0.2809 0.8905 0.8406 0.8699 0.8185
0.2624 3.0 1032 0.2254 0.9230 0.8842 0.9004 0.8714
0.2624 4.0 1376 0.2378 0.9238 0.8797 0.9180 0.8594
0.1865 5.0 1720 0.2277 0.9302 0.9066 0.8992 0.9147
0.1217 6.0 2064 0.2444 0.9262 0.8981 0.9013 0.8957
0.1217 7.0 2408 0.2985 0.9286 0.8999 0.9035 0.8971
0.0847 8.0 2752 0.3397 0.9278 0.8969 0.9090 0.8871
0.0551 9.0 3096 0.3542 0.9270 0.8961 0.9010 0.8924
0.0551 10.0 3440 0.3862 0.9222 0.8895 0.8970 0.8846

Framework versions

  • Transformers 4.14.1
  • Pytorch 1.10.0+cu111
  • Datasets 1.17.0
  • Tokenizers 0.10.3