ayameRushia's picture
Update README.md
bceaf11
|
raw
history blame
2.8 kB
---
language: id
widget:
- text: Entah mengapa saya merasakan ada sesuatu yang janggal di produk ini
license: mit
tags:
- generated_from_trainer
datasets:
- indonlu
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: indobert-base-uncased-finetuned-indonlu-smsa
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: indonlu
type: indonlu
args: smsa
metrics:
- name: Accuracy
type: accuracy
value: 0.9301587301587302
- name: F1
type: f1
value: 0.9066105299178986
- name: Precision
type: precision
value: 0.8992078788375845
- name: Recall
type: recall
value: 0.9147307323234121
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# indobert-base-uncased-finetuned-indonlu-smsa
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the indonlu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2277
- Accuracy: 0.9302
- F1: 0.9066
- Precision: 0.8992
- Recall: 0.9147
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 344 | 0.3831 | 0.8476 | 0.7715 | 0.7817 | 0.7627 |
| 0.4167 | 2.0 | 688 | 0.2809 | 0.8905 | 0.8406 | 0.8699 | 0.8185 |
| 0.2624 | 3.0 | 1032 | 0.2254 | 0.9230 | 0.8842 | 0.9004 | 0.8714 |
| 0.2624 | 4.0 | 1376 | 0.2378 | 0.9238 | 0.8797 | 0.9180 | 0.8594 |
| 0.1865 | 5.0 | 1720 | 0.2277 | 0.9302 | 0.9066 | 0.8992 | 0.9147 |
| 0.1217 | 6.0 | 2064 | 0.2444 | 0.9262 | 0.8981 | 0.9013 | 0.8957 |
| 0.1217 | 7.0 | 2408 | 0.2985 | 0.9286 | 0.8999 | 0.9035 | 0.8971 |
| 0.0847 | 8.0 | 2752 | 0.3397 | 0.9278 | 0.8969 | 0.9090 | 0.8871 |
| 0.0551 | 9.0 | 3096 | 0.3542 | 0.9270 | 0.8961 | 0.9010 | 0.8924 |
| 0.0551 | 10.0 | 3440 | 0.3862 | 0.9222 | 0.8895 | 0.8970 | 0.8846 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3