|
--- |
|
language: id |
|
widget: |
|
- text: Entah mengapa saya merasakan ada sesuatu yang janggal di produk ini |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- indonlu |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: indobert-base-uncased-finetuned-indonlu-smsa |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: indonlu |
|
type: indonlu |
|
args: smsa |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9301587301587302 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9066105299178986 |
|
- name: Precision |
|
type: precision |
|
value: 0.8992078788375845 |
|
- name: Recall |
|
type: recall |
|
value: 0.9147307323234121 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indobert-base-uncased-finetuned-indonlu-smsa |
|
|
|
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the indonlu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2277 |
|
- Accuracy: 0.9302 |
|
- F1: 0.9066 |
|
- Precision: 0.8992 |
|
- Recall: 0.9147 |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1500 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 344 | 0.3831 | 0.8476 | 0.7715 | 0.7817 | 0.7627 | |
|
| 0.4167 | 2.0 | 688 | 0.2809 | 0.8905 | 0.8406 | 0.8699 | 0.8185 | |
|
| 0.2624 | 3.0 | 1032 | 0.2254 | 0.9230 | 0.8842 | 0.9004 | 0.8714 | |
|
| 0.2624 | 4.0 | 1376 | 0.2378 | 0.9238 | 0.8797 | 0.9180 | 0.8594 | |
|
| 0.1865 | 5.0 | 1720 | 0.2277 | 0.9302 | 0.9066 | 0.8992 | 0.9147 | |
|
| 0.1217 | 6.0 | 2064 | 0.2444 | 0.9262 | 0.8981 | 0.9013 | 0.8957 | |
|
| 0.1217 | 7.0 | 2408 | 0.2985 | 0.9286 | 0.8999 | 0.9035 | 0.8971 | |
|
| 0.0847 | 8.0 | 2752 | 0.3397 | 0.9278 | 0.8969 | 0.9090 | 0.8871 | |
|
| 0.0551 | 9.0 | 3096 | 0.3542 | 0.9270 | 0.8961 | 0.9010 | 0.8924 | |
|
| 0.0551 | 10.0 | 3440 | 0.3862 | 0.9222 | 0.8895 | 0.8970 | 0.8846 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.14.1 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.17.0 |
|
- Tokenizers 0.10.3 |