File size: 2,983 Bytes
b2f71ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emotion_classification
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# emotion_classification

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2383
- Accuracy: 0.6

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0769        | 1.0   | 10   | 2.0617          | 0.1812   |
| 2.0383        | 2.0   | 20   | 2.0104          | 0.3      |
| 1.9423        | 3.0   | 30   | 1.8932          | 0.425    |
| 1.7923        | 4.0   | 40   | 1.7442          | 0.475    |
| 1.6547        | 5.0   | 50   | 1.6047          | 0.4875   |
| 1.5297        | 6.0   | 60   | 1.5184          | 0.5437   |
| 1.4345        | 7.0   | 70   | 1.4392          | 0.5625   |
| 1.337         | 8.0   | 80   | 1.3847          | 0.5875   |
| 1.2722        | 9.0   | 90   | 1.3442          | 0.55     |
| 1.217         | 10.0  | 100  | 1.3058          | 0.5625   |
| 1.1497        | 11.0  | 110  | 1.2914          | 0.55     |
| 1.0977        | 12.0  | 120  | 1.2377          | 0.6125   |
| 1.0507        | 13.0  | 130  | 1.2253          | 0.5687   |
| 1.0268        | 14.0  | 140  | 1.2269          | 0.5938   |
| 0.967         | 15.0  | 150  | 1.2260          | 0.5938   |
| 0.9269        | 16.0  | 160  | 1.2421          | 0.5687   |
| 0.9102        | 17.0  | 170  | 1.2218          | 0.5687   |
| 0.8883        | 18.0  | 180  | 1.2207          | 0.5687   |
| 0.8633        | 19.0  | 190  | 1.1933          | 0.6062   |
| 0.8557        | 20.0  | 200  | 1.1830          | 0.575    |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3