File size: 8,263 Bytes
9cf3498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
---
tags:
- generated_from_trainer
model-index:
- name: phi-600M-mix
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: phi-600M-cont/checkpoint-5000
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
# max_steps: 8000
#pretraining_dataset: nampdn-ai/tiny-strange-textbooks
datasets:
- path: math-ai/StackMathQA
name: stackmathqa100k
type:
system_prompt: ""
field_system: system
field_instruction: Q
field_output: A
format: "[INST] {instruction} [/INST]"
no_input_format: "[INST] {instruction} [/INST]"
train_on_split: train[:10%]
- path: SciPhi/textbooks-are-all-you-need-lite
type: completion
field: completion
train_on_split: train[:10%]
dataset_prepared_path:
val_set_size: 0.001
output_dir: ./phi-600M-mix
sequence_len: 2048
sample_packing: true # currently unsupported
pad_to_sequence_len:
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
lora_modules_to_save:
wandb_project: phine
wandb_entity: willfulbytes
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta2: 0.98
adam_epsilon: 0.0000001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 1e-4
cosine_min_lr_ratio: 0.2
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience: false
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 0
evals_per_epoch: 100
saves_per_epoch: 10
save_steps:
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
```
</details><br>
# phi-600M-mix
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6549
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
- lr_scheduler_type: cosine
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.366 | 0.0 | 1 | 3.3037 |
| 2.5809 | 0.01 | 84 | 2.5172 |
| 2.5684 | 0.02 | 168 | 2.3902 |
| 2.6054 | 0.03 | 252 | 2.3144 |
| 2.2944 | 0.04 | 336 | 2.2658 |
| 2.2836 | 0.05 | 420 | 2.2178 |
| 2.4438 | 0.06 | 504 | 2.1837 |
| 2.1093 | 0.07 | 588 | 2.1460 |
| 2.1831 | 0.08 | 672 | 2.1220 |
| 2.3081 | 0.09 | 756 | 2.0990 |
| 1.9909 | 0.1 | 840 | 2.0850 |
| 2.114 | 0.11 | 924 | 2.0550 |
| 1.8529 | 0.12 | 1008 | 2.0410 |
| 2.1594 | 0.13 | 1092 | 2.0215 |
| 2.0632 | 0.14 | 1176 | 2.0035 |
| 1.9221 | 0.15 | 1260 | 1.9906 |
| 2.0664 | 0.16 | 1344 | 1.9861 |
| 1.931 | 0.17 | 1428 | 1.9708 |
| 1.9948 | 0.18 | 1512 | 1.9533 |
| 1.9229 | 0.19 | 1596 | 1.9464 |
| 2.0231 | 0.2 | 1680 | 1.9332 |
| 2.2535 | 0.21 | 1764 | 1.9232 |
| 1.8994 | 0.22 | 1848 | 1.9140 |
| 1.9913 | 0.23 | 1932 | 1.8935 |
| 1.8613 | 0.24 | 2016 | 1.8916 |
| 1.9724 | 0.25 | 2100 | 1.8790 |
| 1.9965 | 0.26 | 2184 | 1.8653 |
| 2.0012 | 0.27 | 2268 | 1.8648 |
| 1.9752 | 0.28 | 2352 | 1.8572 |
| 1.9709 | 0.29 | 2436 | 1.8504 |
| 1.7314 | 0.3 | 2520 | 1.8432 |
| 1.7373 | 0.31 | 2604 | 1.8470 |
| 1.93 | 0.32 | 2688 | 1.8353 |
| 1.7185 | 0.33 | 2772 | 1.8210 |
| 1.8435 | 0.34 | 2856 | 1.8201 |
| 1.8117 | 0.35 | 2940 | 1.8118 |
| 2.1292 | 0.36 | 3024 | 1.8095 |
| 1.7536 | 0.37 | 3108 | 1.8023 |
| 1.7596 | 0.38 | 3192 | 1.7956 |
| 1.9481 | 0.39 | 3276 | 1.7890 |
| 1.7915 | 0.4 | 3360 | 1.7872 |
| 1.8639 | 0.41 | 3444 | 1.7782 |
| 1.6688 | 0.42 | 3528 | 1.7754 |
| 1.6312 | 0.43 | 3612 | 1.7669 |
| 1.8053 | 0.45 | 3696 | 1.7602 |
| 1.8867 | 0.46 | 3780 | 1.7544 |
| 1.9305 | 0.47 | 3864 | 1.7546 |
| 1.7926 | 0.48 | 3948 | 1.7496 |
| 1.8326 | 0.49 | 4032 | 1.7436 |
| 1.7334 | 0.5 | 4116 | 1.7437 |
| 1.6552 | 0.51 | 4200 | 1.7348 |
| 1.6622 | 0.52 | 4284 | 1.7330 |
| 1.9858 | 0.53 | 4368 | 1.7303 |
| 1.7784 | 0.54 | 4452 | 1.7271 |
| 1.8752 | 0.55 | 4536 | 1.7222 |
| 1.5931 | 0.56 | 4620 | 1.7186 |
| 1.6785 | 0.57 | 4704 | 1.7131 |
| 1.8382 | 0.58 | 4788 | 1.7101 |
| 1.5888 | 0.59 | 4872 | 1.7081 |
| 1.8055 | 0.6 | 4956 | 1.7062 |
| 1.6869 | 0.61 | 5040 | 1.7021 |
| 1.8096 | 0.62 | 5124 | 1.6999 |
| 1.9318 | 0.63 | 5208 | 1.6980 |
| 1.6153 | 0.64 | 5292 | 1.6963 |
| 1.6556 | 0.65 | 5376 | 1.6924 |
| 1.4087 | 0.66 | 5460 | 1.6908 |
| 1.7946 | 0.67 | 5544 | 1.6881 |
| 1.6097 | 0.68 | 5628 | 1.6867 |
| 1.6397 | 0.69 | 5712 | 1.6847 |
| 1.7799 | 0.7 | 5796 | 1.6828 |
| 1.6216 | 0.71 | 5880 | 1.6809 |
| 1.5052 | 0.72 | 5964 | 1.6790 |
| 1.6931 | 0.73 | 6048 | 1.6773 |
| 1.5936 | 0.74 | 6132 | 1.6762 |
| 1.803 | 0.75 | 6216 | 1.6737 |
| 1.5175 | 0.76 | 6300 | 1.6719 |
| 1.6305 | 0.77 | 6384 | 1.6711 |
| 1.715 | 0.78 | 6468 | 1.6698 |
| 1.8779 | 0.79 | 6552 | 1.6686 |
| 1.6844 | 0.8 | 6636 | 1.6669 |
| 1.3624 | 0.81 | 6720 | 1.6658 |
| 1.5534 | 0.82 | 6804 | 1.6650 |
| 1.8579 | 0.83 | 6888 | 1.6648 |
| 1.6093 | 0.84 | 6972 | 1.6632 |
| 1.5325 | 0.85 | 7056 | 1.6618 |
| 1.6753 | 0.86 | 7140 | 1.6619 |
| 1.3612 | 0.87 | 7224 | 1.6611 |
| 1.4817 | 0.88 | 7308 | 1.6606 |
| 1.7252 | 0.89 | 7392 | 1.6599 |
| 1.7463 | 0.9 | 7476 | 1.6586 |
| 1.8894 | 0.91 | 7560 | 1.6581 |
| 1.545 | 0.92 | 7644 | 1.6575 |
| 1.7251 | 0.93 | 7728 | 1.6572 |
| 1.7265 | 0.94 | 7812 | 1.6572 |
| 1.7813 | 0.95 | 7896 | 1.6564 |
| 1.7005 | 0.96 | 7980 | 1.6560 |
| 1.6444 | 0.97 | 8064 | 1.6555 |
| 1.5202 | 0.98 | 8148 | 1.6552 |
| 1.8648 | 0.99 | 8232 | 1.6549 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0
|