Edit model card

Merlin Model Card

Model Details

Model Name: Merlin

Model Type: Transformer-based leveraging Microsoft Phi 3b 128k tokens

Publisher: Awels Engineering

License: MIT

Model Description: Merlin is a sophisticated model designed to help as an AI agent focusing on the Druid AI Conversational platform. It leverages advanced machine learning techniques to provide efficient and accurate solutions. It has been trained on the full docments corpus of Druid 7.14.

Dataset

Dataset Name: awels/druidai_admin_dataset

Dataset Source: Hugging Face Datasets

Dataset License: MIT

Dataset Description: The dataset used to train Merlin consists of all the public documents available on the Druid AI Conversational Platform. This dataset is curated to ensure a comprehensive representation of typical administrative and development scenarios encountered in Druid AI Platform.

Training Details

Training Data: The training data includes 33,000 Questions and Answers generated by the Bonito LLM. The dataset is split into 3 sets of data (training, test and validation) to ensure robust model performance.

Training Procedure: Thready was trained using supervised learning with cross-entropy loss and the Adam optimizer. The training involved 1 epoch, a batch size of 4, a learning rate of 5.0e-06, and a cosine learning rate scheduler with gradient checkpointing for memory efficiency.

Hardware: The model was trained on a single NVIDIA RTX 4090 graphic card.

Framework: The training was conducted using PyTorch.

Evaluation

Evaluation Metrics: Thready was evaluated on the training dataset:

epoch = 1.0 total_flos = 33926962GF train_loss = 2.8776 train_runtime = 0:19:34.86 train_samples_per_second = 21.546 train_steps_per_second = 5.387

Performance: The model achieved the following results on the evaluation dataset:

epoch = 1.0 eval_loss = 2.3814 eval_runtime = 0:01:04.90 eval_samples = 5298 eval_samples_per_second = 98.718 eval_steps_per_second = 24.683

Intended Use

Primary Use Case: Merlin is intended to be used locally in an agent swarm to colleborate together to solve Druid AI Conversational platform related problems.

Limitations: While Merlin is highly effective, it may have limitations due to the model size. An 8b model based on Llama 3 is used internally at Awels Engineering.

Downloads last month
14
Safetensors
Model size
3.82B params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for awels/merlinLLM-4b-128k

Finetuned
(34)
this model