GRAG Logo

GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI

This is a sentence-transformers model trained on this Dataset with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. It was merged with the Base-Model WhereIsAI/UAE-Large-V1 again to maintain performance on other languages again.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Evaluation MTEB-Tasks

Classification

  • AmazonCounterfactualClassification
  • AmazonReviewsClassification
  • MassiveIntentClassification
  • MassiveScenarioClassification
  • MTOPDomainClassification
  • MTOPIntentClassification

Pair Classification

  • FalseFriendsGermanEnglish
  • PawsXPairClassification

Retrieval

  • GermanQuAD-Retrieval
  • GermanDPR

STS (Semantic Textual Similarity)

  • GermanSTSBenchmark
TASK UAE GRAG-UAE Merged-UAE GRAG vs. UAE Merged vs. UAE
AmazonCounterfactualClassification 0.5650 0.5449 0.5401 -2.01% -2.48%
AmazonReviewsClassification 0.2738 0.2745 0.2782 0.08% 0.44%
FalseFriendsGermanEnglish 0.4808 0.4777 0.4703 -0.32% -1.05%
GermanQuAD-Retrieval 0.7811 0.8353 0.8628 5.42% 8.18%
GermanSTSBenchmark 0.6421 0.6568 0.6754 1.47% 3.33%
MassiveIntentClassification 0.5139 0.4884 0.4714 -2.55% -4.25%
MassiveScenarioClassification 0.6062 0.5837 0.6111 -2.25% 0.49%
GermanDPR 0.6750 0.7210 0.7507 4.60% 7.57%
MTOPDomainClassification 0.7625 0.7450 0.7686 -1.75% 0.61%
MTOPIntentClassification 0.4994 0.4516 0.4413 -4.77% -5.80%
PawsXPairClassification 0.5452 0.5077 0.5162 -3.76% -2.90%

Evaluation on GRAG-EMBEDDING-BENCHMARK

Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array. See Eval-Dataset and Evaluation Code here

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("avemio-digital/UAE-Large-V1_Triples_Merged_with_base")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

@article{li2023angle,
  title={AnglE-optimized Text Embeddings},
  author={Li, Xianming and Li, Jing},
  journal={arXiv preprint arXiv:2309.12871},
  year={2023}
}
Downloads last month
7
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for avemio/GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI

Dataset used to train avemio/GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI

Collection including avemio/GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI