tts_3000

This model is a fine-tuned version of microsoft/speecht5_tts on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4958

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.9692 0.1074 100 0.8755
0.7909 0.2148 200 0.7229
0.6814 0.3222 300 0.6576
0.7051 0.4296 400 0.6267
0.6291 0.5371 500 0.6020
0.6234 0.6445 600 0.5874
0.6015 0.7519 700 0.5753
0.5888 0.8593 800 0.5715
0.6018 0.9667 900 0.5699
0.5807 1.0741 1000 0.5620
0.5711 1.1815 1100 0.5572
0.5634 1.2889 1200 0.5525
0.5703 1.3963 1300 0.5487
0.5549 1.5038 1400 0.5457
0.5441 1.6112 1500 0.5422
0.5578 1.7186 1600 0.5420
0.5779 1.8260 1700 0.5395
0.5608 1.9334 1800 0.5370
0.5404 2.0408 1900 0.5352
0.5494 2.1482 2000 0.5357
0.539 2.2556 2100 0.5333
0.5471 2.3631 2200 0.5302
0.537 2.4705 2300 0.5274
0.5429 2.5779 2400 0.5287
0.5348 2.6853 2500 0.5293
0.546 2.7927 2600 0.5291
0.5322 2.9001 2700 0.5231
0.5377 3.0075 2800 0.5232
0.5282 3.1149 2900 0.5259
0.5346 3.2223 3000 0.5204
0.5244 3.3298 3100 0.5179
0.5297 3.4372 3200 0.5228
0.5274 3.5446 3300 0.5161
0.53 3.6520 3400 0.5159
0.5253 3.7594 3500 0.5136
0.5338 3.8668 3600 0.5134
0.5445 3.9742 3700 0.5204
0.5284 4.0816 3800 0.5132
0.5333 4.1890 3900 0.5140
0.5209 4.2965 4000 0.5106
0.5311 4.4039 4100 0.5126
0.5174 4.5113 4200 0.5094
0.5263 4.6187 4300 0.5090
0.5195 4.7261 4400 0.5090
0.5212 4.8335 4500 0.5064
0.5211 4.9409 4600 0.5080
0.5379 5.0483 4700 0.5076
0.5284 5.1557 4800 0.5092
0.5164 5.2632 4900 0.5065
0.5244 5.3706 5000 0.5075
0.5292 5.4780 5100 0.5070
0.5116 5.5854 5200 0.5055
0.5444 5.6928 5300 0.5059
0.5126 5.8002 5400 0.5034
0.5174 5.9076 5500 0.5073
0.5086 6.0150 5600 0.5035
0.5098 6.1224 5700 0.5048
0.5147 6.2299 5800 0.5057
0.5085 6.3373 5900 0.5030
0.5155 6.4447 6000 0.5016
0.5273 6.5521 6100 0.5032
0.5154 6.6595 6200 0.5015
0.5168 6.7669 6300 0.5013
0.5199 6.8743 6400 0.5018
0.5299 6.9817 6500 0.5014
0.5166 7.0892 6600 0.5030
0.5092 7.1966 6700 0.5006
0.5117 7.3040 6800 0.5016
0.5132 7.4114 6900 0.5002
0.5196 7.5188 7000 0.4989
0.5085 7.6262 7100 0.4989
0.5097 7.7336 7200 0.4995
0.51 7.8410 7300 0.4982
0.5095 7.9484 7400 0.4978
0.5172 8.0559 7500 0.5002
0.5151 8.1633 7600 0.4991
0.512 8.2707 7700 0.4997
0.4991 8.3781 7800 0.4989
0.5113 8.4855 7900 0.4980
0.5134 8.5929 8000 0.4975
0.5148 8.7003 8100 0.4969
0.514 8.8077 8200 0.4980
0.5119 8.9151 8300 0.4989
0.5054 9.0226 8400 0.4967
0.5088 9.1300 8500 0.4968
0.5067 9.2374 8600 0.4961
0.5148 9.3448 8700 0.4976
0.5098 9.4522 8800 0.4965
0.5035 9.5596 8900 0.4965
0.5111 9.6670 9000 0.4973
0.507 9.7744 9100 0.4963
0.5048 9.8818 9200 0.4963
0.4992 9.9893 9300 0.4958

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
39
Safetensors
Model size
147M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for avdeep/tts_3000

Finetuned
(960)
this model