File size: 3,010 Bytes
e344547 e014e00 e344547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mnist
metrics:
- accuracy
model-index:
- name: image-classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: mnist
type: mnist
args: mnist
metrics:
- name: Accuracy
type: accuracy
value: 0.9833333333333333
- task:
type: image-classification
name: Image Classification
dataset:
name: mnist
type: mnist
config: mnist
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9837
verified: true
- name: Precision Macro
type: precision
value: 0.9836633320435293
verified: true
- name: Precision Micro
type: precision
value: 0.9837
verified: true
- name: Precision Weighted
type: precision
value: 0.9837581874425055
verified: true
- name: Recall Macro
type: recall
value: 0.9831030184134061
verified: true
- name: Recall Micro
type: recall
value: 0.9837
verified: true
- name: Recall Weighted
type: recall
value: 0.9837
verified: true
- name: F1 Macro
type: f1
value: 0.983311507665402
verified: true
- name: F1 Micro
type: f1
value: 0.9837
verified: true
- name: F1 Weighted
type: f1
value: 0.9836627364250822
verified: true
- name: loss
type: loss
value: 0.051053039729595184
verified: true
- name: matthews_correlation
type: matthews_correlation
value: 0.9818945021449504
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# image-classification
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the mnist dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0556
- Accuracy: 0.9833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3743 | 1.0 | 422 | 0.0556 | 0.9833 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|