File size: 3,010 Bytes
e344547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e014e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e344547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mnist
metrics:
- accuracy
model-index:
- name: image-classification
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: mnist
      type: mnist
      args: mnist
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9833333333333333
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: mnist
      type: mnist
      config: mnist
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9837
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.9836633320435293
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.9837
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9837581874425055
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.9831030184134061
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.9837
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.9837
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.983311507665402
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.9837
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.9836627364250822
      verified: true
    - name: loss
      type: loss
      value: 0.051053039729595184
      verified: true
    - name: matthews_correlation
      type: matthews_correlation
      value: 0.9818945021449504
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# image-classification

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the mnist dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0556
- Accuracy: 0.9833

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3743        | 1.0   | 422  | 0.0556          | 0.9833   |


### Framework versions

- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1