whisper-base-zh-20230718-1 - au2a

This model is a fine-tuned version of openai/whisper-small on the some hakka audio dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4142
  • Cer: 84.7926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Cer
0.0499 2.59 1000 0.3377 153.9019
0.0035 5.17 2000 0.3506 138.4528
0.0015 7.76 3000 0.3651 128.2541
0.001 10.35 4000 0.3754 105.1522
0.0005 12.94 5000 0.3841 90.0846
0.0004 15.52 6000 0.3925 92.5134
0.0002 18.11 7000 0.4011 86.3035
0.0002 20.7 8000 0.4070 80.0219
0.0001 23.29 9000 0.4118 82.5451
0.0001 25.87 10000 0.4142 84.7926

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.