ru_t5model_for_legalsimplification

This model is a fine-tuned version of IlyaGusev/rut5_base_sum_gazeta on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Rouge1: 0.5364
  • Rouge2: 0.1481
  • Rougel: 0.506
  • Rougelsum: 0.4917
  • Gen Len: 163.03

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 157 nan 0.5364 0.1481 0.506 0.4917 163.03
No log 2.0 314 nan 0.5364 0.1481 0.506 0.4917 163.03
No log 3.0 471 nan 0.5364 0.1481 0.506 0.4917 163.03
0.0 4.0 628 nan 0.5364 0.1481 0.506 0.4917 163.03
0.0 5.0 785 nan 0.5364 0.1481 0.506 0.4917 163.03
0.0 6.0 942 nan 0.5364 0.1481 0.506 0.4917 163.03
0.0 7.0 1099 nan 0.5364 0.1481 0.506 0.4917 163.03
0.0 8.0 1256 nan 0.5364 0.1481 0.506 0.4917 163.03
0.0 9.0 1413 nan 0.5364 0.1481 0.506 0.4917 163.03
0.0 10.0 1570 nan 0.5364 0.1481 0.506 0.4917 163.03

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.