sulaimank's picture
End of training
cb4766d verified
metadata
library_name: transformers
language:
  - lg
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - yogera
metrics:
  - wer
model-index:
  - name: wav2vec2-bert
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Yogera
          type: yogera
        metrics:
          - name: Wer
            type: wer
            value: 0.1597164303586322

wav2vec2-bert

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Yogera dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2858
  • Wer: 0.1597
  • Cer: 0.0355

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.8824 1.0 198 0.2803 0.2968 0.0591
0.2156 2.0 396 0.2128 0.2389 0.0493
0.1589 3.0 594 0.2110 0.2207 0.0458
0.1277 4.0 792 0.1942 0.1964 0.0422
0.1055 5.0 990 0.1698 0.1873 0.0390
0.087 6.0 1188 0.1771 0.1879 0.0428
0.0738 7.0 1386 0.1850 0.1856 0.0406
0.0589 8.0 1584 0.1799 0.1681 0.0381
0.0573 9.0 1782 0.1882 0.1863 0.0400
0.0481 10.0 1980 0.2275 0.1664 0.0359
0.0425 11.0 2178 0.2135 0.1696 0.0379
0.039 12.0 2376 0.2035 0.1600 0.0354
0.0351 13.0 2574 0.2095 0.1683 0.0366
0.0326 14.0 2772 0.2070 0.1589 0.0353
0.0302 15.0 2970 0.2526 0.1708 0.0367
0.0308 16.0 3168 0.2441 0.1642 0.0367
0.0255 17.0 3366 0.2504 0.1678 0.0365
0.0213 18.0 3564 0.2844 0.1721 0.0377
0.0225 19.0 3762 0.2602 0.1721 0.0383
0.02 20.0 3960 0.2746 0.1610 0.0351
0.0181 21.0 4158 0.2767 0.1668 0.0364
0.0149 22.0 4356 0.2442 0.1633 0.0355
0.0136 23.0 4554 0.2765 0.1677 0.0362
0.0156 24.0 4752 0.2858 0.1597 0.0355

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1