File size: 3,283 Bytes
165c4a4
 
cb4766d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165c4a4
 
cb4766d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
library_name: transformers
language:
- lg
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- yogera
metrics:
- wer
model-index:
- name: wav2vec2-bert
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Yogera
      type: yogera
    metrics:
    - name: Wer
      type: wer
      value: 0.1597164303586322
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-bert

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Yogera dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2858
- Wer: 0.1597
- Cer: 0.0355

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.8824        | 1.0   | 198  | 0.2803          | 0.2968 | 0.0591 |
| 0.2156        | 2.0   | 396  | 0.2128          | 0.2389 | 0.0493 |
| 0.1589        | 3.0   | 594  | 0.2110          | 0.2207 | 0.0458 |
| 0.1277        | 4.0   | 792  | 0.1942          | 0.1964 | 0.0422 |
| 0.1055        | 5.0   | 990  | 0.1698          | 0.1873 | 0.0390 |
| 0.087         | 6.0   | 1188 | 0.1771          | 0.1879 | 0.0428 |
| 0.0738        | 7.0   | 1386 | 0.1850          | 0.1856 | 0.0406 |
| 0.0589        | 8.0   | 1584 | 0.1799          | 0.1681 | 0.0381 |
| 0.0573        | 9.0   | 1782 | 0.1882          | 0.1863 | 0.0400 |
| 0.0481        | 10.0  | 1980 | 0.2275          | 0.1664 | 0.0359 |
| 0.0425        | 11.0  | 2178 | 0.2135          | 0.1696 | 0.0379 |
| 0.039         | 12.0  | 2376 | 0.2035          | 0.1600 | 0.0354 |
| 0.0351        | 13.0  | 2574 | 0.2095          | 0.1683 | 0.0366 |
| 0.0326        | 14.0  | 2772 | 0.2070          | 0.1589 | 0.0353 |
| 0.0302        | 15.0  | 2970 | 0.2526          | 0.1708 | 0.0367 |
| 0.0308        | 16.0  | 3168 | 0.2441          | 0.1642 | 0.0367 |
| 0.0255        | 17.0  | 3366 | 0.2504          | 0.1678 | 0.0365 |
| 0.0213        | 18.0  | 3564 | 0.2844          | 0.1721 | 0.0377 |
| 0.0225        | 19.0  | 3762 | 0.2602          | 0.1721 | 0.0383 |
| 0.02          | 20.0  | 3960 | 0.2746          | 0.1610 | 0.0351 |
| 0.0181        | 21.0  | 4158 | 0.2767          | 0.1668 | 0.0364 |
| 0.0149        | 22.0  | 4356 | 0.2442          | 0.1633 | 0.0355 |
| 0.0136        | 23.0  | 4554 | 0.2765          | 0.1677 | 0.0362 |
| 0.0156        | 24.0  | 4752 | 0.2858          | 0.1597 | 0.0355 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1