You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-1hrs-v1

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1670
  • Wer: 0.2698
  • Cer: 0.0849

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
8.0979 1.0 39 4.3776 1.0 1.0000
3.6468 2.0 78 3.1040 1.0052 0.7648
3.0608 3.0 117 2.9572 0.9997 0.9745
2.9092 4.0 156 2.8562 0.9994 0.8927
2.6916 5.0 195 2.0885 0.9851 0.6876
1.032 6.0 234 0.7733 0.4191 0.1298
0.5445 7.0 273 0.6238 0.3464 0.1085
0.4337 8.0 312 0.6581 0.3707 0.1118
0.3705 9.0 351 0.6407 0.3622 0.1106
0.318 10.0 390 0.6388 0.3649 0.1114
0.2505 11.0 429 0.6244 0.3410 0.1025
0.2108 12.0 468 0.6778 0.3368 0.1031
0.18 13.0 507 0.6533 0.3305 0.1026
0.1528 14.0 546 0.7003 0.3481 0.1030
0.1255 15.0 585 0.7181 0.3342 0.1035
0.1054 16.0 624 0.7766 0.3218 0.0980
0.0937 17.0 663 0.7155 0.3300 0.0995
0.0828 18.0 702 0.7353 0.3134 0.0955
0.0692 19.0 741 0.7471 0.3056 0.0930
0.0544 20.0 780 0.8148 0.3205 0.0988
0.0463 21.0 819 0.8425 0.3010 0.0940
0.0381 22.0 858 0.8396 0.3228 0.0971
0.0383 23.0 897 0.9645 0.3047 0.0968
0.0309 24.0 936 0.8552 0.3060 0.0929
0.0239 25.0 975 0.9528 0.3218 0.1018
0.0262 26.0 1014 0.9318 0.2996 0.0916
0.0189 27.0 1053 1.0495 0.2971 0.0926
0.0165 28.0 1092 0.9751 0.2924 0.0916
0.0132 29.0 1131 0.9325 0.2964 0.0924
0.0124 30.0 1170 0.9158 0.2960 0.0942
0.0147 31.0 1209 0.9964 0.2952 0.0926
0.0158 32.0 1248 1.0100 0.2850 0.0902
0.0077 33.0 1287 0.9393 0.2923 0.0921
0.0127 34.0 1326 0.9722 0.2982 0.0939
0.0044 35.0 1365 1.0325 0.2881 0.0901
0.0059 36.0 1404 1.0391 0.2785 0.0881
0.0027 37.0 1443 1.0116 0.2795 0.0866
0.0012 38.0 1482 1.0550 0.2735 0.0850
0.0006 39.0 1521 1.0673 0.2734 0.0851
0.0004 40.0 1560 1.0859 0.2762 0.0856
0.0004 41.0 1599 1.1013 0.2762 0.0858
0.0003 42.0 1638 1.1089 0.2745 0.0859
0.0002 43.0 1677 1.1119 0.2734 0.0856
0.0002 44.0 1716 1.1180 0.2721 0.0854
0.0001 45.0 1755 1.1242 0.2716 0.0852
0.0001 46.0 1794 1.1305 0.2712 0.0852
0.0001 47.0 1833 1.1367 0.2708 0.0852
0.0001 48.0 1872 1.1432 0.2709 0.0852
0.0001 49.0 1911 1.1477 0.2709 0.0852
0.0001 50.0 1950 1.1524 0.2708 0.0851
0.0001 51.0 1989 1.1563 0.2706 0.0851
0.0001 52.0 2028 1.1605 0.2703 0.0851
0.0001 53.0 2067 1.1637 0.2701 0.0850
0.0001 54.0 2106 1.1670 0.2698 0.0849

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for asr-africa/w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-1hrs-v1

Finetuned
(252)
this model

Collection including asr-africa/w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-1hrs-v1