facebook/mms-300m
This model is a fine-tuned version of facebook/mms-300m on the DigitalUmuganda dataset. It achieves the following results on the evaluation set:
- Loss: 0.9857
- Wer: 0.5175
- Cer: 0.1156
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
54.8231 | 0.9818 | 27 | 5.5912 | 1.0 | 1.0 |
16.0974 | 1.9727 | 54 | 3.2813 | 1.0 | 1.0 |
12.3829 | 2.9636 | 81 | 2.9582 | 1.0 | 1.0 |
11.6369 | 3.9909 | 109 | 2.9327 | 1.0 | 1.0 |
11.78 | 4.9818 | 136 | 3.0289 | 1.0 | 1.0 |
11.7294 | 5.9727 | 163 | 2.8970 | 1.0 | 1.0 |
11.5829 | 6.9636 | 190 | 2.8451 | 1.0 | 1.0 |
10.9847 | 7.9909 | 218 | 2.7870 | 1.0 | 1.0 |
11.269 | 8.9818 | 245 | 2.6834 | 1.0 | 0.9652 |
10.1931 | 9.9727 | 272 | 2.2750 | 1.0 | 0.8276 |
8.6755 | 10.9636 | 299 | 1.8566 | 1.0 | 0.5798 |
6.7633 | 11.9909 | 327 | 1.4861 | 1.0 | 0.4707 |
5.7016 | 12.9818 | 354 | 1.2004 | 0.9976 | 0.3762 |
4.6139 | 13.9727 | 381 | 0.9838 | 0.9509 | 0.2874 |
3.7333 | 14.9636 | 408 | 0.8431 | 0.9037 | 0.2456 |
2.9457 | 15.9909 | 436 | 0.6929 | 0.8081 | 0.1956 |
2.4083 | 16.9818 | 463 | 0.5662 | 0.7055 | 0.1549 |
1.8317 | 17.9727 | 490 | 0.5390 | 0.6683 | 0.1435 |
1.4594 | 18.9636 | 517 | 0.4966 | 0.6362 | 0.1308 |
1.1558 | 19.9909 | 545 | 0.4624 | 0.5875 | 0.1182 |
0.9968 | 20.9818 | 572 | 0.4782 | 0.5759 | 0.1137 |
0.8777 | 21.9727 | 599 | 0.4626 | 0.5409 | 0.1046 |
0.7342 | 22.9636 | 626 | 0.4618 | 0.5367 | 0.1057 |
0.6756 | 23.9909 | 654 | 0.4537 | 0.5375 | 0.1032 |
0.5935 | 24.9818 | 681 | 0.4574 | 0.5195 | 0.0998 |
0.5394 | 25.9727 | 708 | 0.4524 | 0.5122 | 0.0974 |
0.4708 | 26.9636 | 735 | 0.4890 | 0.5034 | 0.0951 |
0.4191 | 27.9909 | 763 | 0.4569 | 0.5058 | 0.0949 |
0.4185 | 28.9818 | 790 | 0.5009 | 0.4964 | 0.0949 |
0.4048 | 29.9727 | 817 | 0.5135 | 0.5163 | 0.0983 |
0.3577 | 30.9636 | 844 | 0.4956 | 0.4942 | 0.0929 |
0.3449 | 31.9909 | 872 | 0.4670 | 0.4757 | 0.0919 |
0.3383 | 32.9818 | 899 | 0.4793 | 0.4903 | 0.0910 |
0.3013 | 33.9727 | 926 | 0.5074 | 0.4920 | 0.0907 |
0.2725 | 34.9636 | 953 | 0.5002 | 0.4842 | 0.0890 |
0.2641 | 35.9909 | 981 | 0.5312 | 0.4723 | 0.0882 |
0.2538 | 36.9818 | 1008 | 0.4744 | 0.4737 | 0.0863 |
0.2392 | 37.9727 | 1035 | 0.5041 | 0.4621 | 0.0863 |
0.2282 | 38.9636 | 1062 | 0.5037 | 0.4511 | 0.0848 |
0.2088 | 39.9909 | 1090 | 0.4988 | 0.4655 | 0.0869 |
0.2062 | 40.9818 | 1117 | 0.4873 | 0.4579 | 0.0842 |
0.204 | 41.9727 | 1144 | 0.4689 | 0.4521 | 0.0836 |
0.1856 | 42.9636 | 1171 | 0.5070 | 0.4555 | 0.0823 |
0.1847 | 43.9909 | 1199 | 0.5058 | 0.4458 | 0.0826 |
0.1899 | 44.9818 | 1226 | 0.4997 | 0.4334 | 0.0808 |
0.1716 | 45.9727 | 1253 | 0.4995 | 0.4244 | 0.0796 |
0.1772 | 46.9636 | 1280 | 0.4993 | 0.4399 | 0.0812 |
0.1612 | 47.9909 | 1308 | 0.4982 | 0.4343 | 0.0800 |
0.1645 | 48.9818 | 1335 | 0.4861 | 0.4321 | 0.0799 |
0.1596 | 49.9727 | 1362 | 0.4963 | 0.4236 | 0.0788 |
0.1544 | 50.9636 | 1389 | 0.5150 | 0.4358 | 0.0795 |
0.1356 | 51.9909 | 1417 | 0.5069 | 0.4470 | 0.0808 |
0.1445 | 52.9818 | 1444 | 0.5112 | 0.4343 | 0.0790 |
0.1381 | 53.9727 | 1471 | 0.5201 | 0.4146 | 0.0760 |
0.1355 | 54.9636 | 1498 | 0.4991 | 0.4110 | 0.0756 |
0.1309 | 55.9909 | 1526 | 0.5260 | 0.4397 | 0.0798 |
0.1359 | 56.9818 | 1553 | 0.5096 | 0.4285 | 0.0789 |
0.1181 | 57.9727 | 1580 | 0.5013 | 0.4224 | 0.0767 |
0.1227 | 58.9636 | 1607 | 0.5219 | 0.4125 | 0.0758 |
0.1127 | 59.9909 | 1635 | 0.5043 | 0.4210 | 0.0759 |
0.1083 | 60.9818 | 1662 | 0.4853 | 0.4010 | 0.0744 |
0.1152 | 61.9727 | 1689 | 0.5032 | 0.4054 | 0.0740 |
0.1142 | 62.9636 | 1716 | 0.5048 | 0.4086 | 0.0745 |
0.0975 | 63.9909 | 1744 | 0.5218 | 0.3996 | 0.0723 |
0.105 | 64.9818 | 1771 | 0.5210 | 0.4112 | 0.0740 |
0.094 | 65.9727 | 1798 | 0.5418 | 0.4073 | 0.0727 |
0.0987 | 66.9636 | 1825 | 0.5166 | 0.4008 | 0.0721 |
0.0958 | 67.9909 | 1853 | 0.5008 | 0.4098 | 0.0722 |
0.0936 | 68.9818 | 1880 | 0.5419 | 0.3988 | 0.0719 |
0.0896 | 69.9727 | 1907 | 0.5570 | 0.4219 | 0.0747 |
0.0853 | 70.9636 | 1934 | 0.5534 | 0.4117 | 0.0740 |
0.0793 | 71.9909 | 1962 | 0.5557 | 0.4078 | 0.0726 |
0.0805 | 72.9818 | 1989 | 0.5368 | 0.4018 | 0.0717 |
0.0875 | 73.9727 | 2016 | 0.5476 | 0.4049 | 0.0741 |
0.076 | 74.9636 | 2043 | 0.5561 | 0.4066 | 0.0729 |
0.0703 | 75.9909 | 2071 | 0.5527 | 0.4052 | 0.0722 |
0.0707 | 76.9818 | 2098 | 0.5543 | 0.3959 | 0.0713 |
0.0665 | 77.9727 | 2125 | 0.5628 | 0.4003 | 0.0708 |
0.0677 | 78.9636 | 2152 | 0.5413 | 0.3957 | 0.0699 |
0.0638 | 79.9909 | 2180 | 0.5498 | 0.3988 | 0.0706 |
0.0652 | 80.9818 | 2207 | 0.5507 | 0.3930 | 0.0699 |
0.061 | 81.9727 | 2234 | 0.5259 | 0.3881 | 0.0682 |
0.06 | 82.9636 | 2261 | 0.5397 | 0.3896 | 0.0684 |
0.0564 | 83.9909 | 2289 | 0.5441 | 0.3842 | 0.0677 |
0.0635 | 84.9818 | 2316 | 0.5372 | 0.3840 | 0.0678 |
0.0514 | 85.9727 | 2343 | 0.5504 | 0.3816 | 0.0683 |
0.0467 | 86.9636 | 2370 | 0.5573 | 0.3774 | 0.0674 |
0.0485 | 87.9909 | 2398 | 0.5604 | 0.3811 | 0.0674 |
0.0519 | 88.9818 | 2425 | 0.5459 | 0.3733 | 0.0665 |
0.0514 | 89.9727 | 2452 | 0.5411 | 0.3799 | 0.0668 |
0.0475 | 90.9636 | 2479 | 0.5369 | 0.3772 | 0.0664 |
0.0434 | 91.9909 | 2507 | 0.5510 | 0.3850 | 0.0672 |
0.0488 | 92.9818 | 2534 | 0.5488 | 0.3774 | 0.0659 |
0.046 | 93.9727 | 2561 | 0.5443 | 0.3794 | 0.0663 |
0.0463 | 94.9636 | 2588 | 0.5463 | 0.3806 | 0.0666 |
0.0399 | 95.9909 | 2616 | 0.5500 | 0.3796 | 0.0663 |
0.0401 | 96.9818 | 2643 | 0.5494 | 0.3769 | 0.0657 |
0.0431 | 97.9727 | 2670 | 0.5516 | 0.375 | 0.0657 |
0.0404 | 98.9636 | 2697 | 0.5523 | 0.3765 | 0.0659 |
0.0409 | 99.0818 | 2700 | 0.5523 | 0.3765 | 0.0661 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for asr-africa/mms-300m_DigitalUmuganda_Afrivoice_Shona_5hr_v1
Base model
facebook/mms-300m