File size: 4,557 Bytes
dd1ae53 2c560be dd1ae53 f8f8653 ce3f25f 62abc13 d2067ae 62abc13 d2067ae 2c560be f92eb9d 3378ab3 92eba0b 2c560be 54af99b 2c560be dd1ae53 920666d 17947c3 810de9a 7636afd 5346934 b104739 f92eb9d 58f34f1 f92eb9d 58f34f1 f92eb9d 2c560be dd1ae53 2c560be dd1ae53 2c560be dd1ae53 1ffdafb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
base_model:
- beomi/Llama-3-KoEn-8B-Instruct-preview
- Danielbrdz/Barcenas-Llama3-8b-ORPO
- maum-ai/Llama-3-MAAL-8B-Instruct-v0.1
- rombodawg/Llama-3-8B-Instruct-Coder
- NousResearch/Meta-Llama-3-8B-Instruct
- rombodawg/Llama-3-8B-Base-Coder-v3.5-10k
- cognitivecomputations/dolphin-2.9-llama3-8b
- asiansoul/Llama-3-Open-Ko-Linear-8B
- NousResearch/Meta-Llama-3-8B
- aaditya/Llama3-OpenBioLLM-8B
library_name: transformers
tags:
- mergekit
- merge
---
# π· Joah-Llama-3-KoEn-8B-Coder-v1
<a href="https://ibb.co/2Srsmn7"><img src="https://i.ibb.co/f9WnB1Y/Screenshot-2024-05-11-at-7-15-42-PM.png" alt="Screenshot-2024-05-11-at-7-15-42-PM" border="0"></a>
μ€λ λΆν° μλ‘μκ² λΉμ΄ λμ΄ μ€ μ¬λ¬λΆμ Merge Model
"μ’μ(Joah)" by AsianSoul
Soon Multi Language Model Merge based on this. First German Start (Korean / English / German) π
Where to use Joah : Medical, Korean, English, Translation, Code, Science... π₯
## π‘ Merge Details
The performance of this merge model doesn't seem to be bad though.-> Just opinion ^^ ποΈ
This may not be a model that satisfies you. But if we continue to overcome our shortcomings,
Won't we someday find the answer we want?
Don't worry even if you don't get the results you want.
I'll find the answer for you.
Soon real PoSE to extend Llama's context length to 64k with using my merge method : [reborn](https://medium.com/@puffanddmx82/reborn-elevating-model-adaptation-with-merging-for-superior-nlp-performance-f604e8e307b2)
I have found that most of merge's model outside so far do not actually have 64k in their configs. I will improve it in the next merge with my reborn. If that doesn't work, I guess I'll have to find another way, right?
256k is not possible. My computer is running out of memory.
If you support me, i will try it on a computer with maximum specifications, also, i would like to conduct great tests by building a network with high-capacity traffic and high-speed 10G speeds for you.
### π§Ά Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) as a base.
### π Models Merged
The following models were included in the merge:
* [beomi/Llama-3-KoEn-8B-Instruct-preview](https://huggingface.co/beomi/Llama-3-KoEn-8B-Instruct-preview)
* [Danielbrdz/Barcenas-Llama3-8b-ORPO](https://huggingface.co/Danielbrdz/Barcenas-Llama3-8b-ORPO)
* [maum-ai/Llama-3-MAAL-8B-Instruct-v0.1](https://huggingface.co/maum-ai/Llama-3-MAAL-8B-Instruct-v0.1)
* [rombodawg/Llama-3-8B-Instruct-Coder](https://huggingface.co/rombodawg/Llama-3-8B-Instruct-Coder)
* [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct)
* [rombodawg/Llama-3-8B-Base-Coder-v3.5-10k](https://huggingface.co/rombodawg/Llama-3-8B-Base-Coder-v3.5-10k)
* [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b)
* [asiansoul/Llama-3-Open-Ko-Linear-8B](https://huggingface.co/asiansoul/Llama-3-Open-Ko-Linear-8B)
* [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B)
### π Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: NousResearch/Meta-Llama-3-8B
# Base model providing a general foundation without specific parameters
- model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
density: 0.60
weight: 0.25
- model: beomi/Llama-3-KoEn-8B-Instruct-preview
parameters:
density: 0.55
weight: 0.15
- model: asiansoul/Llama-3-Open-Ko-Linear-8B
parameters:
density: 0.55
weight: 0.2
- model: maum-ai/Llama-3-MAAL-8B-Instruct-v0.1
parameters:
density: 0.55
weight: 0.1
- model: rombodawg/Llama-3-8B-Instruct-Coder
parameters:
density: 0.55
weight: 0.1
- model: rombodawg/Llama-3-8B-Base-Coder-v3.5-10k
parameters:
density: 0.55
weight: 0.1
- model: cognitivecomputations/dolphin-2.9-llama3-8b
parameters:
density: 0.55
weight: 0.05
- model: Danielbrdz/Barcenas-Llama3-8b-ORPO
parameters:
density: 0.55
weight: 0.05
- model: aaditya/Llama3-OpenBioLLM-8B
parameters:
density: 0.55
weight: 0.1
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
int8_mask: true
dtype: bfloat16
``` |