File size: 2,717 Bytes
89ab76a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.75
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0738
- Accuracy: 0.75

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2801        | 1.0   | 90   | 2.2580          | 0.22     |
| 2.0967        | 2.0   | 180  | 2.0571          | 0.57     |
| 1.8888        | 3.0   | 270  | 1.8279          | 0.52     |
| 1.6488        | 4.0   | 360  | 1.6454          | 0.59     |
| 1.5574        | 5.0   | 450  | 1.4917          | 0.64     |
| 1.4041        | 6.0   | 540  | 1.3953          | 0.71     |
| 1.427         | 7.0   | 630  | 1.3156          | 0.74     |
| 1.2886        | 8.0   | 720  | 1.2510          | 0.76     |
| 1.1965        | 9.0   | 810  | 1.2120          | 0.75     |
| 1.1772        | 10.0  | 900  | 1.1493          | 0.75     |
| 1.1492        | 11.0  | 990  | 1.1436          | 0.74     |
| 1.1419        | 12.0  | 1080 | 1.1106          | 0.74     |
| 1.0549        | 13.0  | 1170 | 1.0867          | 0.74     |
| 1.2573        | 14.0  | 1260 | 1.0797          | 0.73     |
| 1.0615        | 15.0  | 1350 | 1.0738          | 0.75     |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0