SetFit Polarity Model with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use a SetFit model to filter these possible aspect span candidates.
- Use this SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- spaCy Model: en_core_web_lg
- SetFitABSA Aspect Model: asadnaqvi/setfitabsa-aspect
- SetFitABSA Polarity Model: asadnaqvi/setfitabsa-polarity
- Maximum Sequence Length: 512 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Informative |
|
Negative |
|
Positive |
|
Ambivalent |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7065 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"asadnaqvi/setfitabsa-aspect",
"asadnaqvi/setfitabsa-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 11 | 27.7071 | 45 |
Label | Training Sample Count |
---|---|
Ambivalent | 1 |
Informative | 73 |
Negative | 20 |
Positive | 5 |
Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0217 | 1 | 0.2599 | - |
1.0870 | 50 | 0.0608 | 0.3526 |
2.1739 | 100 | 0.0253 | 0.4091 |
3.2609 | 150 | 0.0159 | 0.4497 |
4.3478 | 200 | 0.0035 | 0.4437 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- spaCy: 3.7.4
- Transformers: 4.40.1
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 20
Inference API (serverless) has been turned off for this model.
Model tree for asadnaqvi/setfitabsa-polarity
Base model
BAAI/bge-small-en-v1.5