Edit model card

wav2vec2-large-xls-r-300m-lv-v05

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3862
  • Wer: 0.2588

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.8836 2.81 400 0.8722 0.7244
0.5365 5.63 800 0.4622 0.4812
0.277 8.45 1200 0.4348 0.4056
0.1947 11.27 1600 0.4223 0.3636
0.1655 14.08 2000 0.4084 0.3465
0.1441 16.9 2400 0.4329 0.3497
0.121 19.72 2800 0.4371 0.3324
0.1062 22.53 3200 0.4202 0.3198
0.0937 25.35 3600 0.4063 0.3265
0.0871 28.17 4000 0.4253 0.3255
0.0755 30.98 4400 0.4368 0.3194
0.0627 33.8 4800 0.4067 0.2908
0.0595 36.62 5200 0.3929 0.2973
0.0523 39.44 5600 0.3748 0.2817
0.0434 42.25 6000 0.3769 0.2711
0.0391 45.07 6400 0.3901 0.2653
0.0319 47.88 6800 0.3862 0.2588

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu111
  • Datasets 1.13.3
  • Tokenizers 0.10.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train artursz/wav2vec2-large-xls-r-300m-lv-v05