Edit model card

wav2vec-reptiles

This model is a fine-tuned version of arslanarjumand/wav2vec-reptiles on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 182.3516
  • Pcc Accuracy: 0.6684
  • Pcc Fluency: 0.6499
  • Pcc Total Score: 0.7110
  • Pcc Content: 0.6788

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.5e-05
  • train_batch_size: 4
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.4
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Pcc Accuracy Pcc Fluency Pcc Total Score Pcc Content
2719.4074 0.97 500 2790.7349 0.1171 0.1116 0.1218 0.1245
386.8535 1.93 1000 361.3293 0.1481 0.1332 0.1511 0.1445
273.8093 2.9 1500 304.4040 0.2869 0.2915 0.3062 0.2849
280.8214 3.87 2000 277.9273 0.4065 0.4344 0.4465 0.4131
264.1531 4.84 2500 265.5385 0.5012 0.5234 0.5490 0.5117
211.6362 5.8 3000 226.9335 0.5675 0.5768 0.6171 0.5817
217.8737 6.77 3500 218.1019 0.6089 0.5984 0.6525 0.6194
180.3319 7.74 4000 201.4108 0.6296 0.6142 0.6721 0.6395
174.7695 8.7 4500 201.3474 0.6427 0.6297 0.6872 0.6542
182.4466 9.67 5000 189.6567 0.6566 0.6333 0.6957 0.6619
184.7177 10.64 5500 182.7654 0.6628 0.6405 0.7033 0.6713
174.6915 11.61 6000 181.2284 0.6635 0.6479 0.7077 0.6755
187.671 12.57 6500 180.5753 0.6676 0.6486 0.7099 0.6773
166.4409 13.54 7000 181.2506 0.6682 0.6493 0.7105 0.6781
176.7043 14.51 7500 182.3516 0.6684 0.6499 0.7110 0.6788

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
3
Safetensors
Model size
199M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for arslanarjumand/wav2vec-reptiles

Unable to build the model tree, the base model loops to the model itself. Learn more.

Space using arslanarjumand/wav2vec-reptiles 1