File size: 1,394 Bytes
b784a70 338a952 b784a70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: mit
datasets:
- HuggingFaceFW/fineweb
pipeline_tag: text-generation
---
# Tiny-LLM
A Tiny LLM model with just 10 Million parameters, this is probably one of the small LLM arounds, and it is functional.
## Pretraining
Tiny-LLM was trained on 32B tokens of the Fineweb dataset, with a context length of 1024 tokens.
## Getting Started
To start using these models, you can simply load them via the Hugging Face `transformers` library:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_NAME = "arnir0/Tiny-LLM"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
def generate_text(prompt, model, tokenizer, max_length=512, temperature=1, top_k=50, top_p=0.95):
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(
inputs,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=True
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
def main():
# Define your prompt
prompt = "According to all known laws of aviation, there is no way a bee should be able to fly."
generated_text = generate_text(prompt, model, tokenizer)
print(generated_text)
if __name__ == "__main__":
main()
``` |