disfluency_model

This model is a fine-tuned version of answerdotai/ModernBERT-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0048
  • Accuracy: 0.9956
  • Precision: 0.9847
  • Recall: 0.9927
  • F1: 0.9887

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.05

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0044 1.2745 5000 0.0066 0.9865 0.9513 0.9786 0.9648
0.0058 2.5491 10000 0.0052 0.9932 0.9747 0.9873 0.9810
0.0036 3.8236 15000 0.0047 0.9888 0.9623 0.9846 0.9733
0.0005 5.0981 20000 0.0047 0.9943 0.9807 0.9904 0.9855
0.0011 6.3727 25000 0.0047 0.9946 0.9808 0.9903 0.9855
0.0016 7.6472 30000 0.0054 0.9951 0.9836 0.9909 0.9872
0.0001 8.9217 35000 0.0061 0.9952 0.9838 0.9905 0.9871

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
396M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for arielcerdap/disfluency_model

Finetuned
(90)
this model