disfluency_model
This model is a fine-tuned version of answerdotai/ModernBERT-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0048
- Accuracy: 0.9956
- Precision: 0.9847
- Recall: 0.9927
- F1: 0.9887
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.05
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.0044 | 1.2745 | 5000 | 0.0066 | 0.9865 | 0.9513 | 0.9786 | 0.9648 |
0.0058 | 2.5491 | 10000 | 0.0052 | 0.9932 | 0.9747 | 0.9873 | 0.9810 |
0.0036 | 3.8236 | 15000 | 0.0047 | 0.9888 | 0.9623 | 0.9846 | 0.9733 |
0.0005 | 5.0981 | 20000 | 0.0047 | 0.9943 | 0.9807 | 0.9904 | 0.9855 |
0.0011 | 6.3727 | 25000 | 0.0047 | 0.9946 | 0.9808 | 0.9903 | 0.9855 |
0.0016 | 7.6472 | 30000 | 0.0054 | 0.9951 | 0.9836 | 0.9909 | 0.9872 |
0.0001 | 8.9217 | 35000 | 0.0061 | 0.9952 | 0.9838 | 0.9905 | 0.9871 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for arielcerdap/disfluency_model
Base model
answerdotai/ModernBERT-large