notus-7b-v1 / README.md
alvarobartt's picture
alvarobartt HF staff
Update README.md
e903635
|
raw
history blame
10.7 kB
metadata
model-index:
  - name: notus-7b-dpo-lora
    results: []
datasets:
  - argilla/ultrafeedback-binarized-avg-rating-for-dpo
language:
  - en
base_model: alignment-handbook/zephyr-7b-sft-full
library_name: transformers
pipeline_tag: text-generation
tags:
  - dpo
  - preference
  - ultrafeedback
license: apache-2.0

Model Card for Notus 7B

Notus is going to be a collection of fine-tuned models using DPO, similarly to Zephyr, but mainly focused on the Direct Preference Optimization (DPO) step, aiming to incorporate preference feedback into the LLMs when fine-tuning those. Notus models are intended to be used as assistants via chat-like applications, and are evaluated with the MT-Bench and AlpacaEval benchmarks, to be directly compared with Zephyr fine-tuned models also using DPO.

Model Details

notus-7b-dpo

Model Description

  • Developed by: Argilla, Inc. (based on HuggingFace H4 and MistralAI previous efforts and amazing work)
  • Shared by: Argilla, Inc.
  • Model type: GPT-like 7B model DPO fine-tuned
  • Language(s) (NLP): Mainly English
  • License: Apache 2.0 (same as Zephyr 7B SFT and Mistral 7B v0.1)
  • Finetuned from model: alignment-handbook/zephyr-7b-sft-full

Model Sources [optional]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5051 0.1 100 0.5180 0.1475 -0.3954 0.7183 0.5429 -246.6286 -297.5412 -2.7438 -3.0431
0.4321 0.21 200 0.4375 0.1353 -0.9529 0.7540 1.0882 -252.2036 -297.6632 -2.7578 -3.0543
0.3848 0.31 300 0.4301 -0.4813 -1.8921 0.7302 1.4107 -261.5956 -303.8301 -2.7592 -3.0508
0.3777 0.42 400 0.4091 -0.8597 -2.5306 0.7698 1.6709 -267.9805 -307.6138 -2.7476 -3.0474
0.3559 0.52 500 0.4332 -1.0424 -2.6019 0.7619 1.5595 -268.6939 -309.4406 -2.2960 -2.6106
0.4178 0.62 600 0.3934 -0.6434 -2.4837 0.7659 1.8404 -267.5121 -305.4503 -2.5487 -2.8508
0.4206 0.73 700 0.4058 -1.4700 -3.5113 0.7857 2.0413 -277.7877 -313.7168 -2.5679 -2.8727
0.4323 0.83 800 0.3929 -0.9025 -2.6935 0.7897 1.7910 -269.6095 -308.0414 -2.6213 -2.9202
0.3706 0.93 900 0.3903 -1.1122 -3.0257 0.8056 1.9135 -272.9316 -310.1388 -2.5428 -2.8416
0.0496 1.04 1000 0.3991 -1.4248 -4.1245 0.8016 2.6997 -283.9196 -313.2651 -2.5093 -2.8150
0.0723 1.14 1100 0.3999 -1.8789 -4.5317 0.7897 2.6528 -287.9914 -317.8056 -2.5170 -2.8242
0.0481 1.25 1200 0.4191 -2.6211 -5.5294 0.7817 2.9083 -297.9687 -325.2281 -2.5139 -2.8109
0.0432 1.35 1300 0.4070 -2.0605 -5.0460 0.8056 2.9855 -293.1345 -319.6214 -2.5153 -2.8121
0.0402 1.45 1400 0.4001 -2.2445 -5.0942 0.7937 2.8497 -293.6164 -321.4614 -2.4383 -2.7388
0.0529 1.56 1500 0.4066 -2.3499 -5.2468 0.8016 2.8969 -295.1426 -322.5153 -2.3906 -2.6963
0.0651 1.66 1600 0.3962 -2.0597 -4.8915 0.8016 2.8318 -291.5901 -319.6136 -2.3390 -2.6469
0.0738 1.77 1700 0.3942 -1.8893 -4.6107 0.8135 2.7214 -288.7817 -317.9099 -2.3532 -2.6607
0.0597 1.87 1800 0.3990 -1.8774 -4.7221 0.8175 2.8448 -289.8961 -317.7905 -2.2728 -2.5908
0.0686 1.97 1900 0.3924 -1.8745 -4.6807 0.8056 2.8062 -289.4821 -317.7617 -2.2554 -2.5658
0.0116 2.08 2000 0.4260 -2.4687 -5.7190 0.7937 3.2503 -299.8647 -323.7037 -2.2297 -2.5347
0.0114 2.18 2100 0.4519 -2.8266 -6.3706 0.7976 3.5440 -306.3802 -327.2823 -2.2185 -2.5219
0.0073 2.28 2200 0.4563 -2.9422 -6.5564 0.8016 3.6142 -308.2384 -328.4384 -2.2103 -2.5126
0.0094 2.39 2300 0.4636 -3.3246 -7.0542 0.8016 3.7296 -313.2165 -332.2628 -2.2059 -2.5081
0.0056 2.49 2400 0.4745 -3.3599 -7.1652 0.7976 3.8053 -314.3266 -332.6161 -2.1945 -2.4943
0.0052 2.6 2500 0.4812 -3.4916 -7.3391 0.7976 3.8475 -316.0656 -333.9322 -2.1888 -2.4881
0.0065 2.7 2600 0.4678 -3.2226 -6.9887 0.7976 3.7661 -312.5613 -331.2425 -2.1644 -2.4560
0.0059 2.8 2700 0.4694 -3.4307 -7.2484 0.7976 3.8177 -315.1584 -333.3234 -2.1572 -2.4483
0.0054 2.91 2800 0.4707 -3.4959 -7.3283 0.8056 3.8324 -315.9576 -333.9758 -2.1575 -2.4491

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1

Evaluation

  • Loss: 0.4730
  • Rewards/chosen: -3.5289
  • Rewards/rejected: -7.3700
  • Rewards/accuracies: 0.8016
  • Rewards/margins: 3.8412
  • Logps/rejected: -316.3751
  • Logps/chosen: -334.3053
  • Logits/rejected: -2.1644
  • Logits/chosen: -2.4556

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Technical Specifications

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

8 x A100 40GB

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]