model-index:
- name: notus-7b-dpo-lora
results: []
datasets:
- argilla/ultrafeedback-binarized-avg-rating-for-dpo
language:
- en
base_model: alignment-handbook/zephyr-7b-sft-full
library_name: transformers
pipeline_tag: text-generation
tags:
- dpo
- preference
- ultrafeedback
license: apache-2.0
Model Card for Notus 7B
Notus is going to be a collection of fine-tuned models using DPO, similarly to Zephyr, but mainly focused on the Direct Preference Optimization (DPO) step, aiming to incorporate preference feedback into the LLMs when fine-tuning those. Notus models are intended to be used as assistants via chat-like applications, and are evaluated with the MT-Bench and AlpacaEval benchmarks, to be directly compared with Zephyr fine-tuned models also using DPO.
Model Details
notus-7b-dpo
Model Description
- Developed by: Argilla, Inc. (based on HuggingFace H4 and MistralAI previous efforts and amazing work)
- Shared by: Argilla, Inc.
- Model type: GPT-like 7B model DPO fine-tuned
- Language(s) (NLP): Mainly English
- License: Apache 2.0 (same as Zephyr 7B SFT and Mistral 7B v0.1)
- Finetuned from model:
alignment-handbook/zephyr-7b-sft-full
Model Sources [optional]
- Repository: https://github.com/argilla-io/notus-7b-dpo
- Paper: N/A
- Demo: https://argilla-notus-chat-ui.hf.space/
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5051 | 0.1 | 100 | 0.5180 | 0.1475 | -0.3954 | 0.7183 | 0.5429 | -246.6286 | -297.5412 | -2.7438 | -3.0431 |
0.4321 | 0.21 | 200 | 0.4375 | 0.1353 | -0.9529 | 0.7540 | 1.0882 | -252.2036 | -297.6632 | -2.7578 | -3.0543 |
0.3848 | 0.31 | 300 | 0.4301 | -0.4813 | -1.8921 | 0.7302 | 1.4107 | -261.5956 | -303.8301 | -2.7592 | -3.0508 |
0.3777 | 0.42 | 400 | 0.4091 | -0.8597 | -2.5306 | 0.7698 | 1.6709 | -267.9805 | -307.6138 | -2.7476 | -3.0474 |
0.3559 | 0.52 | 500 | 0.4332 | -1.0424 | -2.6019 | 0.7619 | 1.5595 | -268.6939 | -309.4406 | -2.2960 | -2.6106 |
0.4178 | 0.62 | 600 | 0.3934 | -0.6434 | -2.4837 | 0.7659 | 1.8404 | -267.5121 | -305.4503 | -2.5487 | -2.8508 |
0.4206 | 0.73 | 700 | 0.4058 | -1.4700 | -3.5113 | 0.7857 | 2.0413 | -277.7877 | -313.7168 | -2.5679 | -2.8727 |
0.4323 | 0.83 | 800 | 0.3929 | -0.9025 | -2.6935 | 0.7897 | 1.7910 | -269.6095 | -308.0414 | -2.6213 | -2.9202 |
0.3706 | 0.93 | 900 | 0.3903 | -1.1122 | -3.0257 | 0.8056 | 1.9135 | -272.9316 | -310.1388 | -2.5428 | -2.8416 |
0.0496 | 1.04 | 1000 | 0.3991 | -1.4248 | -4.1245 | 0.8016 | 2.6997 | -283.9196 | -313.2651 | -2.5093 | -2.8150 |
0.0723 | 1.14 | 1100 | 0.3999 | -1.8789 | -4.5317 | 0.7897 | 2.6528 | -287.9914 | -317.8056 | -2.5170 | -2.8242 |
0.0481 | 1.25 | 1200 | 0.4191 | -2.6211 | -5.5294 | 0.7817 | 2.9083 | -297.9687 | -325.2281 | -2.5139 | -2.8109 |
0.0432 | 1.35 | 1300 | 0.4070 | -2.0605 | -5.0460 | 0.8056 | 2.9855 | -293.1345 | -319.6214 | -2.5153 | -2.8121 |
0.0402 | 1.45 | 1400 | 0.4001 | -2.2445 | -5.0942 | 0.7937 | 2.8497 | -293.6164 | -321.4614 | -2.4383 | -2.7388 |
0.0529 | 1.56 | 1500 | 0.4066 | -2.3499 | -5.2468 | 0.8016 | 2.8969 | -295.1426 | -322.5153 | -2.3906 | -2.6963 |
0.0651 | 1.66 | 1600 | 0.3962 | -2.0597 | -4.8915 | 0.8016 | 2.8318 | -291.5901 | -319.6136 | -2.3390 | -2.6469 |
0.0738 | 1.77 | 1700 | 0.3942 | -1.8893 | -4.6107 | 0.8135 | 2.7214 | -288.7817 | -317.9099 | -2.3532 | -2.6607 |
0.0597 | 1.87 | 1800 | 0.3990 | -1.8774 | -4.7221 | 0.8175 | 2.8448 | -289.8961 | -317.7905 | -2.2728 | -2.5908 |
0.0686 | 1.97 | 1900 | 0.3924 | -1.8745 | -4.6807 | 0.8056 | 2.8062 | -289.4821 | -317.7617 | -2.2554 | -2.5658 |
0.0116 | 2.08 | 2000 | 0.4260 | -2.4687 | -5.7190 | 0.7937 | 3.2503 | -299.8647 | -323.7037 | -2.2297 | -2.5347 |
0.0114 | 2.18 | 2100 | 0.4519 | -2.8266 | -6.3706 | 0.7976 | 3.5440 | -306.3802 | -327.2823 | -2.2185 | -2.5219 |
0.0073 | 2.28 | 2200 | 0.4563 | -2.9422 | -6.5564 | 0.8016 | 3.6142 | -308.2384 | -328.4384 | -2.2103 | -2.5126 |
0.0094 | 2.39 | 2300 | 0.4636 | -3.3246 | -7.0542 | 0.8016 | 3.7296 | -313.2165 | -332.2628 | -2.2059 | -2.5081 |
0.0056 | 2.49 | 2400 | 0.4745 | -3.3599 | -7.1652 | 0.7976 | 3.8053 | -314.3266 | -332.6161 | -2.1945 | -2.4943 |
0.0052 | 2.6 | 2500 | 0.4812 | -3.4916 | -7.3391 | 0.7976 | 3.8475 | -316.0656 | -333.9322 | -2.1888 | -2.4881 |
0.0065 | 2.7 | 2600 | 0.4678 | -3.2226 | -6.9887 | 0.7976 | 3.7661 | -312.5613 | -331.2425 | -2.1644 | -2.4560 |
0.0059 | 2.8 | 2700 | 0.4694 | -3.4307 | -7.2484 | 0.7976 | 3.8177 | -315.1584 | -333.3234 | -2.1572 | -2.4483 |
0.0054 | 2.91 | 2800 | 0.4707 | -3.4959 | -7.3283 | 0.8056 | 3.8324 | -315.9576 | -333.9758 | -2.1575 | -2.4491 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.1+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Evaluation
- Loss: 0.4730
- Rewards/chosen: -3.5289
- Rewards/rejected: -7.3700
- Rewards/accuracies: 0.8016
- Rewards/margins: 3.8412
- Logps/rejected: -316.3751
- Logps/chosen: -334.3053
- Logits/rejected: -2.1644
- Logits/chosen: -2.4556
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Technical Specifications
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
8 x A100 40GB
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]