plaguss HF staff commited on
Commit
0213a41
1 Parent(s): e02333c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -1
README.md CHANGED
@@ -27,4 +27,51 @@ tags:
27
  This model is a new DPO fine-tune of our new open dataset [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs), on the [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) model. You can find more information of the "distilabeled" dataset used at this repo [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction), and visit [distilabel](https://github.com/argilla-io/distilabel).
28
 
29
  The difference between this model and [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp)
30
- is that this model has been fine-tuned for a whole epoch instead, so it has seen the whole dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  This model is a new DPO fine-tune of our new open dataset [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs), on the [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) model. You can find more information of the "distilabeled" dataset used at this repo [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction), and visit [distilabel](https://github.com/argilla-io/distilabel).
28
 
29
  The difference between this model and [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp)
30
+ is that this model has been fine-tuned for a whole epoch instead instead of 200 steps, so it has seen the whole dataset.
31
+
32
+ ## Training details
33
+
34
+ As we did with [Notus](https://argilla.io/blog/notus7b/), we wanted a reproducible recipe to test the impact of data quality.
35
+
36
+ And we're lucky to have so many amazing folks in the open community contributing reproducible, easy-to-use training scripts and recipes. This time, [Maxime Labonne](https://twitter.com/maximelabonne) had shared a [Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) to fine-tune OpenHermes with DPO and the original Intel's dataset, perfect! We just updated the base model to [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp), and applied the same dataset recipe we used for [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction):
37
+
38
+ ```python
39
+ from datasets import load_dataset
40
+
41
+ # Instead of this:
42
+ # dataset = load_dataset("Intel/orca_dpo_pairs", split="train")
43
+
44
+ # we did this
45
+ dataset = load_dataset("argilla/distilabel-intel-orca-dpo-pairs", split="train")
46
+
47
+ dataset = dataset.filter(
48
+ lambda r:
49
+ r["status"] != "tie" and
50
+ r["chosen_score"] >= 8 and
51
+ not r["in_gsm8k_train"]
52
+ )
53
+ ```
54
+
55
+ ## Benchmark results
56
+ For benchmarking we used the famous "Nous" or "Teknium" benchmark. You can find below an overview, including our first experiment with a less ambitious dataset filtering (removing ties and `score>5`).
57
+
58
+ For running the benchmark we used another awesome contribution from Maxime: [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), check it out!
59
+
60
+ | Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
61
+ |-------------------------|------:|------:|---------:|-------:|------:|
62
+ |[argilla/distilabeled-Marcoro14-7B-slerp-full](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp-full)| 45.17| **76.59**| 64.68| **48.15**| **58.65**|
63
+ |[argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp)| **45.4**| 76.47| **65.46**| 47.19| 58.63|
64
+ |[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67|
65
+ |[argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B) | 44.64 | 73.35 | 55.96 | 42.21 | 54.04 |
66
+
67
+ ### Training Hardware
68
+
69
+ We used 1 x A100 80GB in runpod for less than 2 hours.
70
+
71
+ ## Acknowledgements
72
+
73
+ We'd like to thank the amazing open community and in particular:
74
+
75
+ * The Intel team for publishing a great open dataset and show how well it worked in the first place
76
+ * Teknium and NousResearch for their awesome work and models.
77
+ * Maxime for sharing such great resources.