Update README.md
Browse files
README.md
CHANGED
@@ -27,4 +27,51 @@ tags:
|
|
27 |
This model is a new DPO fine-tune of our new open dataset [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs), on the [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) model. You can find more information of the "distilabeled" dataset used at this repo [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction), and visit [distilabel](https://github.com/argilla-io/distilabel).
|
28 |
|
29 |
The difference between this model and [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp)
|
30 |
-
is that this model has been fine-tuned for a whole epoch instead, so it has seen the whole dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
This model is a new DPO fine-tune of our new open dataset [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs), on the [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) model. You can find more information of the "distilabeled" dataset used at this repo [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction), and visit [distilabel](https://github.com/argilla-io/distilabel).
|
28 |
|
29 |
The difference between this model and [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp)
|
30 |
+
is that this model has been fine-tuned for a whole epoch instead instead of 200 steps, so it has seen the whole dataset.
|
31 |
+
|
32 |
+
## Training details
|
33 |
+
|
34 |
+
As we did with [Notus](https://argilla.io/blog/notus7b/), we wanted a reproducible recipe to test the impact of data quality.
|
35 |
+
|
36 |
+
And we're lucky to have so many amazing folks in the open community contributing reproducible, easy-to-use training scripts and recipes. This time, [Maxime Labonne](https://twitter.com/maximelabonne) had shared a [Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) to fine-tune OpenHermes with DPO and the original Intel's dataset, perfect! We just updated the base model to [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp), and applied the same dataset recipe we used for [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction):
|
37 |
+
|
38 |
+
```python
|
39 |
+
from datasets import load_dataset
|
40 |
+
|
41 |
+
# Instead of this:
|
42 |
+
# dataset = load_dataset("Intel/orca_dpo_pairs", split="train")
|
43 |
+
|
44 |
+
# we did this
|
45 |
+
dataset = load_dataset("argilla/distilabel-intel-orca-dpo-pairs", split="train")
|
46 |
+
|
47 |
+
dataset = dataset.filter(
|
48 |
+
lambda r:
|
49 |
+
r["status"] != "tie" and
|
50 |
+
r["chosen_score"] >= 8 and
|
51 |
+
not r["in_gsm8k_train"]
|
52 |
+
)
|
53 |
+
```
|
54 |
+
|
55 |
+
## Benchmark results
|
56 |
+
For benchmarking we used the famous "Nous" or "Teknium" benchmark. You can find below an overview, including our first experiment with a less ambitious dataset filtering (removing ties and `score>5`).
|
57 |
+
|
58 |
+
For running the benchmark we used another awesome contribution from Maxime: [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), check it out!
|
59 |
+
|
60 |
+
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|
61 |
+
|-------------------------|------:|------:|---------:|-------:|------:|
|
62 |
+
|[argilla/distilabeled-Marcoro14-7B-slerp-full](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp-full)| 45.17| **76.59**| 64.68| **48.15**| **58.65**|
|
63 |
+
|[argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp)| **45.4**| 76.47| **65.46**| 47.19| 58.63|
|
64 |
+
|[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67|
|
65 |
+
|[argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B) | 44.64 | 73.35 | 55.96 | 42.21 | 54.04 |
|
66 |
+
|
67 |
+
### Training Hardware
|
68 |
+
|
69 |
+
We used 1 x A100 80GB in runpod for less than 2 hours.
|
70 |
+
|
71 |
+
## Acknowledgements
|
72 |
+
|
73 |
+
We'd like to thank the amazing open community and in particular:
|
74 |
+
|
75 |
+
* The Intel team for publishing a great open dataset and show how well it worked in the first place
|
76 |
+
* Teknium and NousResearch for their awesome work and models.
|
77 |
+
* Maxime for sharing such great resources.
|