SentenceTransformer

Repository with the model for the implementation of WikiCheck API, end-to-end open source Automatic Fact-Checking based on Wikipedia.

The research was published in CIKM2021 applied track:

  • Trokhymovych, Mykola, and Diego Saez-Trumper. WikiCheck: An End-to-End Open Source Automatic Fact-Checking API Based on Wikipedia. Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Association for Computing Machinery, 2021, pp. 4155โ€“4164, CIKM โ€™21. DOI:10.1145/3459637.3481961

  • The preprint WikiCheck: An End-to-End Open Source Automatic Fact-Checking API Based on Wikipedia: DOI:10.48550/arXiv.2109.00835

Uploaded model from the following repo.

Site:

@inproceedings{10.1145/3459637.3481961,
author = {Trokhymovych, Mykola and Saez-Trumper, Diego},
title = {WikiCheck: An End-to-End Open Source Automatic Fact-Checking API Based on Wikipedia},
year = {2021},
isbn = {9781450384469},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3459637.3481961},
doi = {10.1145/3459637.3481961},
booktitle = {Proceedings of the 30th ACM International Conference on Information & Knowledge Management},
pages = {4155โ€“4164},
numpages = {10},
keywords = {applied research, nlp, nli, wikipedia, fact-checking},
location = {Virtual Event, Queensland, Australia},
series = {CIKM '21}
}

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BartModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("arg-tech/bart_tuned_wikifact_check_ucu_trokhymovych")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.9.6
  • Sentence Transformers: 3.4.1
  • Transformers: 4.44.0
  • PyTorch: 2.4.0
  • Accelerate: 0.33.0
  • Datasets:
  • Tokenizers: 0.19.1

Citation

BibTeX

Downloads last month
48
Safetensors
Model size
139M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.