File size: 1,737 Bytes
43f8a99
246af98
 
 
 
 
 
 
 
 
43f8a99
246af98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: celebrity-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Celebrity Classifier
## Model description
This model classifies a face to a celebrity. It is trained on [ares1123/celebrity_dataset](https://huggingface.co/datasets/ares1123/celebrity_dataset) dataset and fine-tuned on [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k).

## Dataset description
[ares1123/celebrity_dataset](https://huggingface.co/datasets/ares1123/celebrity_dataset)
Top 1000 celebrities. 18,184 images. 256x256. Square cropped to face.

### How to use
```python
from transformers import pipeline

# Initialize image classification pipeline
pipe = pipeline("image-classification", model="tonyassi/celebrity-classifier")

# Perform classification
result = pipe('image.png')

# Print results
print(result)
```

## Training and evaluation data
It achieves the following results on the evaluation set:
- Loss: 0.9089
- Accuracy: 0.7982

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0