File size: 1,590 Bytes
588de8c d46affe 7ea76c1 d46affe a602ef4 588de8c baa26ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
tags:
- Keras
- gan
- tensorflow
- conditional-image-generation
---
## rasm
Arabic art using GANs. We currently have two models for generating calligraphy and mosaics.
## Notebooks
<table class="tg">
<tr>
<th class="tg-yw4l"><b>Name</b></th>
<th class="tg-yw4l"><b>Notebook</b></th>
</tr>
<tr>
<td class="tg-yw4l">Visualization</td>
<td class="tg-yw4l"><a href="https://colab.research.google.com/github/ARBML/rasm/blob/master/demo.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" width = '100px' >
</a></td>
</tr>
</table>
## Visualization
A set of functions for vis, interpolation and animation. Mostly tested in colab notebooks.
### Load Model
```python
from rasm import Rasm
model = Rasm(mode = 'calligraphy')
model = Rasm(mode = 'mosaics')
```
### Generate random
```python
model.generate_randomly()
```
### Generate grid
```python
model.generate_grid()
```
### Generate animation
```python
model.generate_animation(size = 2, steps = 20)
```
![alt text](video.gif)
## Sample Models
### Mosaics
![alt text](imgs/mosaic.png)
![alt text](imgs/mosaicsv2.png)
![alt text](imgs/mosaicsv3.png)
![alt text](imgs/mosaicsv4.png)
### Calligraphy
![alt text](imgs/calligraphyv2.PNG)
![alt text](imgs/calligraphyv3.png)
![alt text](imgs/calligraphyv4.png)
![alt text](imgs/calligraphyv5.png)
## References
- Gan-surgery: https://github.com/aydao/stylegan2-surgery
- WikiArt model: https://github.com/pbaylies/stylegan2
- Starter-Notebook: https://github.com/Hephyrius/Stylegan2-Ada-Google-Colab-Starter-Notebook/ |