File size: 31,559 Bytes
baa26ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.


"""Generate images using pretrained network pickle."""

import argparse
import sys
import os
import subprocess
import pickle
import re

import scipy
import numpy as np
import PIL.Image

import dnnlib
import dnnlib.tflib as tflib

os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide"
import moviepy.editor
from opensimplex import OpenSimplex

import warnings # mostly numpy warnings for me
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)

#----------------------------------------------------------------------------

def create_image_grid(images, grid_size=None):
    '''
    Args:
        images (np.array): images to place on the grid
        grid_size (tuple(int, int)): size of grid (grid_w, grid_h)
    Returns:
        grid (np.array): image grid of size grid_size
    '''
    # Some sanity check:
    assert images.ndim == 3 or images.ndim == 4
    num, img_h, img_w = images.shape[0], images.shape[1], images.shape[2]
    if grid_size is not None:
        grid_w, grid_h = tuple(grid_size)
    else:
        grid_w = max(int(np.ceil(np.sqrt(num))), 1)
        grid_h = max((num - 1) // grid_w + 1, 1)
    # Get the grid
    grid = np.zeros(
        [grid_h * img_h, grid_w * img_w] + list(images.shape[-1:]), dtype=images.dtype
    )
    for idx in range(num):
        x = (idx % grid_w) * img_w
        y = (idx // grid_w) * img_h
        grid[y : y + img_h, x : x + img_w, ...] = images[idx]
    return grid

#----------------------------------------------------------------------------

def generate_images(network_pkl, seeds, truncation_psi, outdir, class_idx=None, dlatents_npz=None, grid=False):
    tflib.init_tf()
    print('Loading networks from "%s"...' % network_pkl)
    with dnnlib.util.open_url(network_pkl) as fp:
        _G, _D, Gs = pickle.load(fp)

    os.makedirs(outdir, exist_ok=True)

    # Render images for a given dlatent vector.
    if dlatents_npz is not None:
        print(f'Generating images from dlatents file "{dlatents_npz}"')
        dlatents = np.load(dlatents_npz)['dlatents']
        max_l = 2 * int(np.log2(Gs.output_shape[-1]) - 1)  # max_l=18 for 1024x1024 models
        if dlatents.shape[1:] != (max_l, 512):  # [N, max_l, 512]
            actual_size = int(2**(dlatents.shape[1]//2+1))
            print(f'''Mismatch of loaded dlatents and network! dlatents was created with network of size: {actual_size}\n
                   {network_pkl} is of size {Gs.output_shape[-1]}''')
            sys.exit(1)
        imgs = Gs.components.synthesis.run(dlatents, output_transform=dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True))
        for i, img in enumerate(imgs):
            fname = f'{outdir}/dlatent{i:02d}.png'
            print (f'Saved {fname}')
            PIL.Image.fromarray(img, 'RGB').save(fname)
        return

    # Render images for dlatents initialized from random seeds.
    Gs_kwargs = {
        'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
        'randomize_noise': False
    }
    if truncation_psi is not None:
        Gs_kwargs['truncation_psi'] = truncation_psi

    noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
    label = np.zeros([1] + Gs.input_shapes[1][1:])
    if class_idx is not None:
        label[:, class_idx] = 1

    images = []
    for seed_idx, seed in enumerate(seeds):
        print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
        rnd = np.random.RandomState(seed)
        z = rnd.randn(1, *Gs.input_shape[1:]) # [minibatch, component]
        tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
        image = Gs.run(z, label, **Gs_kwargs) # [minibatch, height, width, channel]
        images.append(image[0])
        PIL.Image.fromarray(image[0], 'RGB').save(f'{outdir}/seed{seed:04d}.png')

    # If user wants to save a grid of the generated images
    if grid:
        print('Generating image grid...')
        PIL.Image.fromarray(create_image_grid(np.array(images)), 'RGB').save(f'{outdir}/grid.png')

#----------------------------------------------------------------------------

def truncation_traversal(network_pkl,npys,outdir,class_idx=None, seed=[0],start=-1.0,stop=1.0,increment=0.1,framerate=24):
    tflib.init_tf()
    print('Loading networks from "%s"...' % network_pkl)
    with dnnlib.util.open_url(network_pkl) as fp:
        _G, _D, Gs = pickle.load(fp)

    os.makedirs(outdir, exist_ok=True)

    Gs_kwargs = {
        'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
        'randomize_noise': False
    }

    noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
    label = np.zeros([1] + Gs.input_shapes[1][1:])
    if class_idx is not None:
        label[:, class_idx] = 1

    count = 1
    trunc = start

    images = []
    while trunc <= stop:
        Gs_kwargs['truncation_psi'] = trunc
        print('Generating truncation %0.2f' % trunc)

        rnd = np.random.RandomState(seed)
        z = rnd.randn(1, *Gs.input_shape[1:]) # [minibatch, component]
        tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
        image = Gs.run(z, label, **Gs_kwargs) # [minibatch, height, width, channel]
        images.append(image[0])
        PIL.Image.fromarray(image[0], 'RGB').save(f'{outdir}/frame{count:05d}.png')

        trunc+=increment
        count+=1

    cmd="ffmpeg -y -r {} -i {}/frame%05d.png -vcodec libx264 -pix_fmt yuv420p {}/truncation-traversal-seed{}-start{}-stop{}.mp4".format(framerate,outdir,outdir,seed[0],start,stop)
    subprocess.call(cmd, shell=True)

#----------------------------------------------------------------------------

def valmap(value, istart, istop, ostart, ostop):
  return ostart + (ostop - ostart) * ((value - istart) / (istop - istart))

class OSN():
  min=-1
  max= 1

  def __init__(self,seed,diameter):
    self.tmp = OpenSimplex(seed)
    self.d = diameter
    self.x = 0
    self.y = 0

  def get_val(self,angle):
    self.xoff = valmap(np.cos(angle), -1, 1, self.x, self.x + self.d);
    self.yoff = valmap(np.sin(angle), -1, 1, self.y, self.y + self.d);
    return self.tmp.noise2d(self.xoff,self.yoff)

def get_noiseloop(endpoints, nf, d, start_seed):
    features = []
    zs = []
    for i in range(512):
      features.append(OSN(i+start_seed,d))

    inc = (np.pi*2)/nf
    for f in range(nf):
      z = np.random.randn(1, 512)
      for i in range(512):
        z[0,i] = features[i].get_val(inc*f)
      zs.append(z)

    return zs

def line_interpolate(zs, steps):
   out = []
   for i in range(len(zs)-1):
    for index in range(steps):
     fraction = index/float(steps)
     out.append(zs[i+1]*fraction + zs[i]*(1-fraction))
   return out

def generate_zs_from_seeds(seeds,Gs):
    zs = []
    for seed_idx, seed in enumerate(seeds):
        rnd = np.random.RandomState(seed)
        z = rnd.randn(1, *Gs.input_shape[1:]) # [minibatch, component]
        zs.append(z)
    return zs

def convertZtoW(latent, truncation_psi=0.7, truncation_cutoff=9):
    dlatent = Gs.components.mapping.run(latent, None) # [seed, layer, component]
    dlatent_avg = Gs.get_var('dlatent_avg') # [component]
    dlatent = dlatent_avg + (dlatent - dlatent_avg) * truncation_psi

    return dlatent

def generate_latent_images(zs, truncation_psi, outdir, save_npy,prefix,vidname,framerate):
    Gs_kwargs = {
        'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
        'randomize_noise': False
    }

    if not isinstance(truncation_psi, list):
        truncation_psi = [truncation_psi] * len(zs)

    for z_idx, z in enumerate(zs):
        if isinstance(z,list):
          z = np.array(z).reshape(1,512)
        elif isinstance(z,np.ndarray):
          z.reshape(1,512)
        print('Generating image for step %d/%d ...' % (z_idx, len(zs)))
        Gs_kwargs['truncation_psi'] = truncation_psi[z_idx]
        noise_rnd = np.random.RandomState(1) # fix noise
        tflib.set_vars({var: noise_rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
        images = Gs.run(z, None, **Gs_kwargs) # [minibatch, height, width, channel]
        PIL.Image.fromarray(images[0], 'RGB').save(f'{outdir}/frames/{prefix}{z_idx:05d}.png')
        if save_npy:
          np.save(dnnlib.make_run_dir_path('%s%05d.npy' % (prefix,z_idx)), z)

    cmd="ffmpeg -y -r {} -i {}/frames/{}%05d.png -vcodec libx264 -pix_fmt yuv420p {}/walk-{}-{}fps.mp4".format(framerate,outdir,prefix,outdir,vidname,framerate)
    subprocess.call(cmd, shell=True)

def generate_images_in_w_space(ws, truncation_psi,outdir,save_npy,prefix,vidname,framerate):

    Gs_kwargs = {
        'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
        'randomize_noise': False,
        'truncation_psi': truncation_psi
    }

    for w_idx, w in enumerate(ws):
        print('Generating image for step %d/%d ...' % (w_idx, len(ws)))
        noise_rnd = np.random.RandomState(1) # fix noise
        tflib.set_vars({var: noise_rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
        images = Gs.components.synthesis.run(w, **Gs_kwargs) # [minibatch, height, width, channel]
        PIL.Image.fromarray(images[0], 'RGB').save(f'{outdir}/frames/{prefix}{w_idx:05d}.png')
        if save_npy:
          np.save(dnnlib.make_run_dir_path('%s%05d.npy' % (prefix,w_idx)), w)

    cmd="ffmpeg -y -r {} -i {}/frames/{}%05d.png -vcodec libx264 -pix_fmt yuv420p {}/walk-{}-{}fps.mp4".format(framerate,outdir,prefix,outdir,vidname,framerate)
    subprocess.call(cmd, shell=True)

def generate_latent_walk(network_pkl, truncation_psi, outdir, walk_type, frames, seeds, npys, save_vector, diameter=2.0, start_seed=0, framerate=24 ):
    global _G, _D, Gs, noise_vars
    tflib.init_tf()

    print('Loading networks from "%s"...' % network_pkl)
    with dnnlib.util.open_url(network_pkl) as fp:
        _G, _D, Gs = pickle.load(fp)

    os.makedirs(outdir, exist_ok=True)
    os.makedirs(outdir+"/frames", exist_ok=True)

    # Render images for dlatents initialized from random seeds.
    Gs_kwargs = {
        'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
        'randomize_noise': False,
        'truncation_psi': truncation_psi
    }

    noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
    zs = []
    ws =[]


    # npys specified, let's work with these instead of seeds
    # npys must be saved as W's (arrays of 18x512)
    if npys and (len(npys) > 0):
        ws = npys


    wt = walk_type.split('-')

    if wt[0] == 'line':
        if seeds and (len(seeds) > 0):
            zs = generate_zs_from_seeds(seeds,Gs)

        if ws == []:
            number_of_steps = int(frames/(len(zs)-1))+1
        else:
            number_of_steps = int(frames/(len(ws)-1))+1

        if (len(wt)>1 and wt[1] == 'w'):
          if ws == []:
            for i in range(len(zs)):
              ws.append(convertZtoW(zs[i]))

          points = line_interpolate(ws,number_of_steps)
          zpoints = line_interpolate(zs,number_of_steps)

        else:
          points = line_interpolate(zs,number_of_steps)


    # from Gene Kogan
    elif wt[0] == 'bspline':
        # bspline in w doesnt work yet
        # if (len(walk_type)>1 and walk_type[1] == 'w'):
        #   ws = []
        #   for i in range(len(zs)):
        #     ws.append(convertZtoW(zs[i]))

        #   print(ws[0].shape)
        #   w = []
        #   for i in range(len(ws)):
        #     w.append(np.asarray(ws[i]).reshape(512,18))
        #   points = get_latent_interpolation_bspline(ws,frames,3, 20, shuffle=False)
        # else:
          z = []
          for i in range(len(zs)):
            z.append(np.asarray(zs[i]).reshape(512))
          points = get_latent_interpolation_bspline(z,frames,3, 20, shuffle=False)

    # from Dan Shiffman: https://editor.p5js.org/dvs/sketches/Gb0xavYAR
    elif wt[0] == 'noiseloop':
        points = get_noiseloop(None,frames,diameter,start_seed)

    if (wt[0] == 'line' and len(wt)>1 and wt[1] == 'w'):
      # print(points[0][:,:,1])
      # print(zpoints[0][:,1])
      # ws = []
      # for i in enumerate(len(points)):
      #   ws.append(convertZtoW(points[i]))
        #added for npys
        if seeds:
            seed_out = 'w-' + wt[0] + ('-'.join([str(seed) for seed in seeds]))
        else:
            seed_out = 'w-' + wt[0] + '-dlatents'

        generate_images_in_w_space(points, truncation_psi,outdir,save_vector,'frame', seed_out, framerate)
    elif (len(wt)>1 and wt[1] == 'w'):
      print('%s is not currently supported in w space, please change your interpolation type' % (wt[0]))
    else:
        if(len(wt)>1):
            seed_out = 'z-' + wt[0] + ('-'.join([str(seed) for seed in seeds]))
        else:
            seed_out = 'z-' + walk_type + '-seed' +str(start_seed)
        generate_latent_images(points, truncation_psi, outdir, save_vector,'frame', seed_out, framerate)

#----------------------------------------------------------------------------

def generate_neighbors(network_pkl, seeds, npys, diameter, truncation_psi, num_samples, save_vector, outdir):
    global _G, _D, Gs, noise_vars
    tflib.init_tf()
    print('Loading networks from "%s"...' % network_pkl)
    with dnnlib.util.open_url(network_pkl) as fp:
        _G, _D, Gs = pickle.load(fp)

    os.makedirs(outdir, exist_ok=True)

    # Render images for dlatents initialized from random seeds.
    Gs_kwargs = {
        'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
        'randomize_noise': False,
        'truncation_psi': truncation_psi
    }

    noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]

    for seed_idx, seed in enumerate(seeds):
        print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx+1, len(seeds)))
        rnd = np.random.RandomState(seed)

        og_z = rnd.randn(1, *Gs.input_shape[1:]) # [minibatch, component]
        tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
        images = Gs.run(og_z, None, **Gs_kwargs) # [minibatch, height, width, channel]
        # PIL.Image.fromarray(images[0], 'RGB').save(dnnlib.make_run_dir_path('seed%04d.png' % seed))
        PIL.Image.fromarray(images[0], 'RGB').save(f'{outdir}/seed{seed:05d}.png')

        zs = []
        z_prefix = 'seed%04d_neighbor' % seed

        for s in range(num_samples):
            random = np.random.uniform(-diameter,diameter,[1,512])
#             zs.append(np.clip((og_z+random),-1,1))
            new_z = np.clip(np.add(og_z,random),-1,1)
            images = Gs.run(new_z, None, **Gs_kwargs) # [minibatch, height, width, channel]
            # PIL.Image.fromarray(images[0], 'RGB').save(dnnlib.make_run_dir_path('%s%04d.png' % (z_prefix,s)))
            PIL.Image.fromarray(images[0], 'RGB').save(f'{outdir}/{z_prefix}{s:05d}.png')
            # generate_latent_images(zs, truncation_psi, save_vector, z_prefix)
            if save_vector:
                np.save(dnnlib.make_run_dir_path('%s%05d.npy' % (z_prefix,s)), new_z)



#----------------------------------------------------------------------------

def lerp_video(network_pkl,                # Path to pretrained model pkl file
               seeds,                      # Random seeds
               grid_w=None,                # Number of columns
               grid_h=None,                # Number of rows
               truncation_psi=1.0,         # Truncation trick
               outdir='out',               # Output dir
               slowdown=1,                 # Slowdown of the video (power of 2)
               duration_sec=30.0,          # Duration of video in seconds
               smoothing_sec=3.0,
               mp4_fps=30,
               mp4_codec="libx264",
               mp4_bitrate="16M"):
    # Sanity check regarding slowdown
    message = 'slowdown must be a power of 2 (1, 2, 4, 8, ...) and greater than 0!'
    assert slowdown & (slowdown - 1) == 0 and slowdown > 0, message
    # Initialize TensorFlow and create outdir
    tflib.init_tf()
    os.makedirs(outdir, exist_ok=True)
    # Total duration of video and number of frames to generate
    num_frames = int(np.rint(duration_sec * mp4_fps))
    total_duration = duration_sec * slowdown

    print(f'Loading network from {network_pkl}...')
    with dnnlib.util.open_url(network_pkl) as fp:
        _G, _D, Gs = pickle.load(fp)

    print("Generating latent vectors...")
    # If there's more than one seed provided and the shape isn't specified
    if grid_w == grid_h == None and len(seeds) >= 1:
        # number of images according to the seeds provided
        num = len(seeds)
        # Get the grid width and height according to num:
        grid_w = max(int(np.ceil(np.sqrt(num))), 1)
        grid_h = max((num - 1) // grid_w + 1, 1)
        grid_size = [grid_w, grid_h]
        # [frame, image, channel, component]:
        shape = [num_frames] + Gs.input_shape[1:]
        # Get the latents:
        all_latents = np.stack([np.random.RandomState(seed).randn(*shape).astype(np.float32) for seed in seeds], axis=1)
    # If only one seed is provided and the shape is specified
    elif None not in (grid_w, grid_h) and len(seeds) == 1:
        # Otherwise, the user gives one seed and the grid width and height:
        grid_size = [grid_w, grid_h]
        # [frame, image, channel, component]:
        shape = [num_frames, np.prod(grid_size)] + Gs.input_shape[1:]
        # Get the latents with the random state:
        random_state = np.random.RandomState(seeds)
        all_latents = random_state.randn(*shape).astype(np.float32)
    else:
        print("Error: wrong combination of arguments! Please provide \
                either one seed and the grid width and height, or a \
                list of seeds to use.")
        sys.exit(1)

    all_latents = scipy.ndimage.gaussian_filter(
        all_latents,
        [smoothing_sec * mp4_fps] + [0] * len(Gs.input_shape),
        mode="wrap"
    )
    all_latents /= np.sqrt(np.mean(np.square(all_latents)))
    # Name of the final mp4 video
    mp4 = f"{grid_w}x{grid_h}-lerp-{slowdown}xslowdown.mp4"

    # Aux function to slowdown the video by 2x
    def double_slowdown(latents, duration_sec, num_frames):
        # Make an empty latent vector with double the amount of frames
        z = np.empty(np.multiply(latents.shape, [2, 1, 1]), dtype=np.float32)
        # Populate it
        for i in range(len(latents)):
            z[2*i] = latents[i]
        # Interpolate in the odd frames
        for i in range(1, len(z), 2):
            # For the last frame, we loop to the first one
            if i == len(z) - 1:
                z[i] = (z[0] + z[i-1]) / 2
            else:
                z[i] = (z[i-1] + z[i+1]) / 2
        # We also need to double the duration_sec and num_frames
        duration_sec *= 2
        num_frames *= 2
        # Return the new latents, and the two previous quantities
        return z, duration_sec, num_frames

    while slowdown > 1:
        all_latents, duration_sec, num_frames = double_slowdown(all_latents, duration_sec, num_frames)
        slowdown //= 2

    # Define the kwargs for the Generator:
    Gs_kwargs = dnnlib.EasyDict()
    Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8,
                                      nchw_to_nhwc=True)
    Gs_kwargs.randomize_noise = False
    if truncation_psi is not None:
        Gs_kwargs.truncation_psi = truncation_psi

    # Aux function: Frame generation func for moviepy.
    def make_frame(t):
        frame_idx = int(np.clip(np.round(t * mp4_fps), 0, num_frames - 1))
        latents = all_latents[frame_idx]
        # Get the images (with labels = None)
        images = Gs.run(latents, None, **Gs_kwargs)
        # Generate the grid for this timestamp:
        grid = create_image_grid(images, grid_size)
        # grayscale => RGB
        if grid.shape[2] == 1:
            grid = grid.repeat(3, 2)
        return grid

    # Generate video using make_frame:
    print(f'Generating interpolation video of length: {total_duration} seconds...')
    videoclip = moviepy.editor.VideoClip(make_frame, duration=duration_sec)
    videoclip.write_videofile(os.path.join(outdir, mp4),
                              fps=mp4_fps,
                              codec=mp4_codec,
                              bitrate=mp4_bitrate)

#----------------------------------------------------------------------------

def _parse_num_range(s):
    '''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''

    range_re = re.compile(r'^(\d+)-(\d+)$')
    m = range_re.match(s)
    if m:
        return range(int(m.group(1)), int(m.group(2))+1)
    vals = s.split(',')
    return [int(x) for x in vals]

# My extended version of this helper function:
def _parse_num_range_ext(s):
    '''
    Input:
        s (str): Comma separated string of numbers 'a,b,c', a range 'a-c', or
                 even a combination of both 'a,b-c', 'a-b,c', 'a,b-c,d,e-f,...'
    Output:
        nums (list): Ordered list of ascending ints in s, with repeating values
                     deleted (can be modified to not do either of this)
    '''
    # Sanity check 0:
    # In case there's a space between the numbers (impossible due to argparse,
    # but hey, I am that paranoid):
    s = s.replace(' ', '')
    # Split w.r.t comma
    str_list = s.split(',')
    nums = []
    for el in str_list:
        if '-' in el:
            # The range will be 'a-b', so we wish to find both a and b using re:
            range_re = re.compile(r'^(\d+)-(\d+)$')
            match = range_re.match(el)
            # We get the two numbers:
            a = int(match.group(1))
            b = int(match.group(2))
            # Sanity check 1: accept 'a-b' or 'b-a', with a<=b:
            if a <= b: r = [n for n in range(a, b + 1)]
            else: r = [n for n in range(b, a + 1)]
            # Use extend since r will also be an array:
            nums.extend(r)
        else:
            # It's a single number, so just append it:
            nums.append(int(el))
    # Sanity check 2: delete repeating numbers:
    nums = list(set(nums))
    # Return the numbers in ascending order:
    return sorted(nums)

#----------------------------------------------------------------------------

def _parse_npy_files(files):
    '''Accept a comma separated list of npy files and return a list of z vectors.'''

    zs =[]

    file_list = files.split(",")


    for f in file_list:
        # load numpy array
        arr = np.load(f)
        # check if it's actually npz:
        if 'dlatents' in arr:
            arr = arr['dlatents']
        zs.append(arr)



    return zs

#----------------------------------------------------------------------------

_examples = '''examples:

  # Generate curated MetFaces images without truncation (Fig.10 left)
  python %(prog)s --outdir=out --trunc=1 --seeds=85,265,297,849 \\
      --network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/metfaces.pkl

  # Generate uncurated MetFaces images with truncation (Fig.12 upper left)
  python %(prog)s --outdir=out --trunc=0.7 --seeds=600-605 \\
      --network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/metfaces.pkl

  # Generate class conditional CIFAR-10 images (Fig.17 left, Car)
  python %(prog)s --outdir=out --trunc=1 --seeds=0-35 --class=1 \\
      --network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/cifar10.pkl

  # Render image from projected latent vector
  python %(prog)s --outdir=out --dlatents=out/dlatents.npz \\
      --network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/ffhq.pkl
'''

#----------------------------------------------------------------------------

def main():
    parser = argparse.ArgumentParser(
        description='Generate images using pretrained network pickle.',
        epilog=_examples,
        formatter_class=argparse.RawDescriptionHelpFormatter
    )

    subparsers = parser.add_subparsers(help='Sub-commands', dest='command')

    parser_generate_images = subparsers.add_parser('generate-images', help='Generate images')
    parser_generate_images.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
    parser_generate_images.add_argument('--seeds', type=_parse_num_range, help='List of random seeds', dest='seeds', required=True)
    parser_generate_images.add_argument('--truncation-psi', type=float, help='Truncation psi (default: %(default)s)', dest='truncation_psi', default=0.5)
    parser_generate_images.add_argument('--class', dest='class_idx', type=int, help='Class label (default: unconditional)')
    parser_generate_images.add_argument('--create-grid', action='store_true', help='Add flag to save the generated images in a grid', dest='grid')
    parser_generate_images.add_argument('--outdir', help='Root directory for run results (default: %(default)s)', default='out', metavar='DIR')
    parser_generate_images.set_defaults(func=generate_images)

    parser_truncation_traversal = subparsers.add_parser('truncation-traversal', help='Generate truncation walk')
    parser_truncation_traversal.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
    parser_truncation_traversal.add_argument('--seed', type=_parse_num_range, help='Singular seed value')
    parser_truncation_traversal.add_argument('--npys', type=_parse_npy_files, help='List of .npy files')
    parser_truncation_traversal.add_argument('--fps', type=int, help='Starting value',default=24,dest='framerate')
    parser_truncation_traversal.add_argument('--start', type=float, help='Starting value')
    parser_truncation_traversal.add_argument('--stop', type=float, help='Stopping value')
    parser_truncation_traversal.add_argument('--increment', type=float, help='Incrementing value')
    parser_truncation_traversal.add_argument('--outdir', help='Root directory for run results (default: %(default)s)', default='out', metavar='DIR')
    parser_truncation_traversal.set_defaults(func=truncation_traversal)

    parser_generate_latent_walk = subparsers.add_parser('generate-latent-walk', help='Generate latent walk')
    parser_generate_latent_walk.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
    parser_generate_latent_walk.add_argument('--trunc', type=float, help='Truncation psi (default: %(default)s)', dest='truncation_psi', default=0.5)
    parser_generate_latent_walk.add_argument('--walk-type', help='Type of walk (default: %(default)s)', default='line')
    parser_generate_latent_walk.add_argument('--frames', type=int, help='Frame count (default: %(default)s', default=240)
    parser_generate_latent_walk.add_argument('--fps', type=int, help='Starting value',default=24,dest='framerate')
    parser_generate_latent_walk.add_argument('--seeds', type=_parse_num_range, help='List of random seeds')
    parser_generate_latent_walk.add_argument('--npys', type=_parse_npy_files, help='List of .npy files')
    parser_generate_latent_walk.add_argument('--save_vector', dest='save_vector', action='store_true', help='also save vector in .npy format')
    parser_generate_latent_walk.add_argument('--diameter', type=float, help='diameter of noise loop', default=2.0)
    parser_generate_latent_walk.add_argument('--start_seed', type=int, help='random seed to start noise loop from', default=0)
    parser_generate_latent_walk.add_argument('--outdir', help='Root directory for run results (default: %(default)s)', default='out', metavar='DIR')
    parser_generate_latent_walk.set_defaults(func=generate_latent_walk)

    parser_generate_neighbors = subparsers.add_parser('generate-neighbors', help='Generate random neighbors of a seed')
    parser_generate_neighbors.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
    parser_generate_neighbors.add_argument('--seeds', type=_parse_num_range, help='List of random seeds')
    parser_generate_neighbors.add_argument('--npys', type=_parse_npy_files, help='List of .npy files')
    parser_generate_neighbors.add_argument('--diameter', type=float, help='distance around seed to sample from', default=0.1)
    parser_generate_neighbors.add_argument('--save_vector', dest='save_vector', action='store_true', help='also save vector in .npy format')
    parser_generate_neighbors.add_argument('--num_samples', type=int, help='How many neighbors to generate (default: %(default)s', default=25)
    parser_generate_neighbors.add_argument('--trunc', type=float, help='Truncation psi (default: %(default)s)', dest='truncation_psi', default=0.5)
    parser_generate_neighbors.add_argument('--outdir', help='Root directory for run results (default: %(default)s)', default='out', metavar='DIR')
    parser_generate_neighbors.set_defaults(func=generate_neighbors)

    parser_lerp_video = subparsers.add_parser('lerp-video', help='Generate interpolation video (lerp) between random vectors')
    parser_lerp_video.add_argument('--network', help='Path to network pickle filename', dest='network_pkl', required=True)
    parser_lerp_video.add_argument('--seeds', type=_parse_num_range_ext, help='List of random seeds', dest='seeds', required=True)
    parser_lerp_video.add_argument('--grid-w', type=int, help='Video grid width/columns (default: %(default)s)', default=None, dest='grid_w')
    parser_lerp_video.add_argument('--grid-h', type=int, help='Video grid height/rows (default: %(default)s)', default=None, dest='grid_h')
    parser_lerp_video.add_argument('--trunc', type=float, help='Truncation psi (default: %(default)s)', default=1.0, dest='truncation_psi')
    parser_lerp_video.add_argument('--slowdown', type=int, help='Slowdown the video by this amount; must be a power of 2 (default: %(default)s)', default=1, dest='slowdown')
    parser_lerp_video.add_argument('--duration-sec', type=float, help='Duration of video (default: %(default)s)', default=30.0, dest='duration_sec')
    parser_lerp_video.add_argument('--fps', type=int, help='FPS of generated video (default: %(default)s)', default=30, dest='mp4_fps')
    parser_lerp_video.add_argument('--outdir', help='Root directory for run results (default: %(default)s)', default='out', metavar='DIR')
    parser_lerp_video.set_defaults(func=lerp_video)

    args = parser.parse_args()
    kwargs = vars(args)
    subcmd = kwargs.pop('command')

    if subcmd is None:
        print('Error: missing subcommand.  Re-run with --help for usage.')
        sys.exit(1)

    func = kwargs.pop('func')
    func(**kwargs)

#----------------------------------------------------------------------------

if __name__ == "__main__":
    main()

#----------------------------------------------------------------------------