nerui-base-3 / README.md
apwic's picture
End of training
7b298ec verified
|
raw
history blame
3.96 kB
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: nerui-base-3
    results: []

nerui-base-3

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0518
  • Location Precision: 0.9222
  • Location Recall: 0.9651
  • Location F1: 0.9432
  • Location Number: 86
  • Organization Precision: 0.9333
  • Organization Recall: 0.9438
  • Organization F1: 0.9385
  • Organization Number: 178
  • Person Precision: 0.9843
  • Person Recall: 0.9766
  • Person F1: 0.9804
  • Person Number: 128
  • Overall Precision: 0.9471
  • Overall Recall: 0.9592
  • Overall F1: 0.9531
  • Overall Accuracy: 0.9889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Location Precision Location Recall Location F1 Location Number Organization Precision Organization Recall Organization F1 Organization Number Person Precision Person Recall Person F1 Person Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.241 1.0 96 0.0559 0.8039 0.9535 0.8723 86 0.9086 0.8933 0.9008 178 0.9538 0.9688 0.9612 128 0.8968 0.9311 0.9136 0.9833
0.0545 2.0 192 0.0551 0.8454 0.9535 0.8962 86 0.9011 0.9213 0.9111 178 0.9841 0.9688 0.9764 128 0.9136 0.9439 0.9285 0.9827
0.0286 3.0 288 0.0485 0.8586 0.9884 0.9189 86 0.9480 0.9213 0.9345 178 0.9841 0.9688 0.9764 128 0.9372 0.9515 0.9443 0.9870
0.0151 4.0 384 0.0570 0.9121 0.9651 0.9379 86 0.9375 0.9270 0.9322 178 0.9766 0.9766 0.9766 128 0.9443 0.9515 0.9479 0.9873
0.0088 5.0 480 0.0518 0.9222 0.9651 0.9432 86 0.9333 0.9438 0.9385 178 0.9843 0.9766 0.9804 128 0.9471 0.9592 0.9531 0.9889

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2